Weighted Integral Method for an Estimation of Displacement COV of Laminated Composite Plates
탄성계수와 함께 포아송비는 구조의 거동을 결정하는 중요 구조인수중의 하나이다. 따라서 구조응답의 불확실성에 미치는 포아송비의 독립적 영향에 대한 평가가 필요하다. 본 연구에서는 포아송비의 불확실성이 복합적층판의 거동 에 미치는 영향을 산정하기 위한 정식화를 제안한다. 포아송비의 영향은 동일 차수인 임의인수의 영향을 포함하는 부행렬을 통하여 얻을 수 있으며, 이는 대상 인수의 평균을 중심으로 한 Taylor전개를 통하여 구할 수 있다. 제안 방법의 검증을 위하여 예제 평판을 해석하였고, 그 결과를 몬테카를로 해석에 의한 결과와 비교하였다. 두 방법을 통하여 얻은 결과는 상화 잘 일치하는 결과를 나타내어, 제안한 방법이 적절함을 제시하였다.
In addition to the Young’s modulus, the Poisson’s ratio is also at the center of attention in the field stochastic finite element analysis since the parameters play an important role in determining structural behavior. Accordingly, the sole effect of this parameter on the response variability is of importance from the perspective of estimation of uncertain response. To this end, a formulation to determine the response variability in laminate composite plates due to the spatial randomness of Poisson’s ratio is suggested. The independent contributions of random Poisson’s ratiocan be captured in terms of sub-matrices which include the effect of the random parameter in the same order, which can be attained by using the Taylor’s series expansion about the mean of the parameter. In order to validate the adequacy of the proposed formulation, several example analyses are performed, and then the results are compared with Monte Carlo simulation (MCS). A good agreement between the suggested scheme and MCS is observed showing the adequacy of the scheme.