목적: 곡률이 없는 안경렌즈위에 하드 코팅 막과 SiO2 막을 쌓은 후, FDTD를 사용하여 원기 둥 나노 구조물을 쌓고, 나노 구조 형태에 따른 코팅 막의 광학 특성을 연구하였다. 방법: 시뮬레이터 설계에서 굴절률이 1.55인 안경렌즈위에 하드코팅 막을 3μm로 하고, 그 위 에 SiO2 막을 100nm에서 900nm 까지 변화시켰으며, SiO2 막에 원기둥 모양의 나노 구조를 만 들었다. 원기둥 구조물의 체적비를 최적으로 만들기 위해 원기둥의 배열을 hexagonal 형태로 하였다. 원기둥 깊이를 100nm로, 주기 300nm로 고정하고 원기둥 반경을 50nm에서 150nm로 변화시켜 반사율이 거의 영인 파장위치를 찾아 굴절률을 계산하였다. 그리고 원기둥 반경 75nm이고, 주기는 200nm일 때 원기둥 깊이를 100nm, 300nm, 500nm 700nm, 900nm 로 원기둥 깊이에 따른 반사스펙트럼을 관찰했으며, 또한 원기둥 깊이 100nm이고 반경과 주기를 37.5nm 와 100nm의 배수로 337.5nm와 800nm까지 변화시켜 주기에 따른 반사스펙트럼을 관찰했다. 결과: 원기둥 깊이를 100nm로, 시뮬레이션 주기를 300nm로 고정하고 원기둥 반경을 50nm에서 150nm로 변화시킨 결과 반사율이 거의 0인 파장위치는 508nm이었다. 이 결과로부터 나노 원 기둥의 굴절률은 간섭현상으로 계산한 값은 1.27이고, 나노 원기둥의 밀도로 계산한 1.24로 거 의 비슷한 값을 가짐을 알 수 있었다. 그리고 원기둥 깊이가 50nm에서는 간섭현상이 일어나지 않지만 100nm이상에서는 간섭현상이 일어나고 원기둥의 깊이가 깊어질수록 반사율이 최대 최 소가 되는 파장의 개수가 점점 많아짐을 알 수 있었다. 또한 시뮬레이션 주기는 100nm에서 300nm 까지는 간섭현상이 나타나다가 400nm이상에서는 간섭현상이 사라지고 산란이 나타남을 알 수 있었다. 결론: 나노 원기둥 형태에 따른 광학 특성을 연구한 결과, 나노 원기둥의 굴절률은 간섭현상 으로 계산한 값은 1.27이고, 나노 원기둥의 밀도로 계산한 1.24로 거의 비슷한 값을 가짐을 알 수 있었다. 원기둥의 깊이가 깊어질수록 반사율이 최대 최소가 되는 파장의 개수가 점점 많아 짐을 알 수 있었다. 또한 주기는 커짐에 따라 간섭현상이 나타나다가 사라지면서 산란이 나타 남을 알 수 있었다.