논문 상세보기

감성 패턴을 이용한 영화평 평점 추론 KCI 등재

A Rating Inference of Movie Reviews Using Sentiment Patterns

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/315482
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
감성과학 (Korean Journal of the science of Emotion & sensibility)
한국감성과학회 (The Korean Society For Emotion & Sensibility)
초록

본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류 하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제 인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영 화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평 들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하 였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.

We propose the sentiment pattern as a novel sentiment feature for more accurate text sentiment analysis, and introduce the rating inference of movie reviews using it. The text sentiment analysis is a task that recognizes and classifies sentiment of text whether it is positive or negative. For that purpose, the sentiment feature is used, which includes sentiment words and phrase pattern that have specific sentiment like positive or negative. The previous researches for the sentiment analysis, however, have a limit to understand accurately total sentiment of either a sentence or text because they consider the sentiment of sentiment words and phrase patterns independently. Therefore, we propose the sentiment pattern that is defined by arranging semantically all sentiment in a sentence, and use them as a new sentiment feature for the rating inference that is one of the detail subjects of the sentiment analysis. In order to verify the effect of proposed sentiment pattern, we conducted experiments of rating inference. Ratings of test reviews is inferred by using a probabilistic method with sentiment features including sentiment patterns extracted from training reviews. As a result, it is shown that the result of rating inference with sentiment patterns are more accurate than that without sentiment patterns.

저자
  • 김정호(한국항공대학교 컴퓨터공학과) | Jung-Ho Kim
  • 인주호(한국항공대학교 컴퓨터공학과) | Joo-Ho In
  • 채수환(한국항공대학교 전자 및 정보통신공학부) | Soo-Hoan Chae