논문 상세보기

Bisphenol A Induced Mitochondrial Derived Reactive Oxygen Species Plays a Critical Role in Porcine Oocyte Maturation

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/318134
모든 회원에게 무료로 제공됩니다.
한국동물생명공학회(구 한국수정란이식학회) (Journal of Animal Reproduction & Biotechnology)
초록

The plastic monomer bisphenol A (BPA) is well known as a representative environmental hormones. Recent studies showed that the BPA exposure induced mitochondrial dysfunction and mitochondrial derived reactive oxygen species (mito-ROS). However, changes of antioxidant enzymes expression and ROS production from mitochondria according to the BPA exposure on in vitro maturation (IVM) of porcine oocytes have not been studied. We hypothesized that regulation of ROS production from mitochondria by BPA may play a critical role in meiotic maturation or expansion of cumulus cells in cumulus-oocyte complexes (COCs). To investigate the negative effects of BPA exposure on oocyte maturation, immature pig oocytes were matured in NCSU-23 medium supplemented with BPA (50, 75 and 100 μM) for 44 h. Expectedly, the rates of meiotic maturation and cumulus cell expansion of COCs in the BPA (75 μM) treated group was significantly lower than those of control group (p<0.01). Most of secretion factors expressions from COCs were significantly decreased (p<0.05) in the BPA treated COCs. Next, we investigated the intracellular ROS and mitochondrial specific superoxide production according to the BPA exposure using DCF-DA and mito-SOX staining, respectively. BPA exposure were showed that increasing of both intracellular ROS and mito-ROS, as well as mitochondrial related antioxidant enzymes (sod2, prdx3, prdx5) mRNA expression significantly increased (p<0.01) in COCs. And then, mitochondria membrane potential (MMP) dramatically reduced, and mitochondrial-derived apoptotic factors (bax, bcl-xl, caspase 3) mRNA expressions were increased (p<0.01) in BPA treated COCs. In additon, protein levels of mitochondrial-derived apoptosis genes (AIF, cleaved parp1 and caspase 3) were significantly increased (p<0.05) by BPA exposure. To confirm the reduction of BPA-induced mito-ROS, we used to the mitochondrial-targeted ROS scavenger, mito-TEMPO. Interestingly, addition of mito-TEMPO (0.1 μM) to the BPA pre-treated COCs recovered in meiotic maturation of porcine oocytes. These results demonstrated that BPA exposure was induced increasing of mitochondrial dysfunction, mito-ROS and mitochondrial-mediated apoptosis on pig oocyte maturation. Therefore, we suggest that controlling of mito-ROS plays a critical role in pig oocyte maturation in vitro. These findings will be helpful to solve causes of mitochondrial-related infertility.

저자
  • Hyo-Jin Park(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Soo-Yong Park(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Jin-Woo Kim(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Jae-Young Park(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Seul-Gi Yang(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Jae-Min Jung(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Min-Ji Kim(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)
  • Deog-Bon Koo(Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 38453, Republic of Korea)