This study identified effects of forest density and placed on the fluid flow in the canopy using a computational fluid dynamics model, ENVI_met model. In addition, change of the fluid flow for each point was observed by selecting the impact prediction point. As a result, the density of the forest gave a direct effect on the fluid flow in height below the tree height and inside crown. In case of height below the tree height, the strongest physical changes appeared in CASE1 of dense forest. On the other hand, in case of crown height, distinct fluid flow changes appeared in CASE 2 and 3. After calculating fluid change of the impact prediction point according to altitude, the more dense height below the tree height appear significant changes in the fluid. On the other hand, in case of crown, from the moment outside the interference of the tree, the result showed that the wind path formed distinctly in CASE 2 and 3.