This study was performed to develop a stable cultivation technology switchable from an open system to a closed system for cut roses. Closed growing system in different ratios of drainage and water was supplied to investigate the accumulation of macronutrients and roses growth. In treatment by the 30% mixing ratio of drainage to water, total amount of drainage was reduced since the medium stage of growth. However, in treatment by the 10% mixing r atio, total o ne o f drainage c ontinuously was increased to the blossom stage. Electric conductivity (EC) of initiation drainage on 10% mixing treatment was stable to t he blossom s tage. However, EC of d rainage on 3 0% mixing treatment was slightly increased. The pH of the drainage was maintained between 5.0 and 5.5 in both treatments. Phenolic compounds were not detected in the drainage, while organic acids were detected a little bit. When recirculated drainage was continuously used, the concentration of NO3-N, Ca, Mg, S, and K in the drainage was increased, but that of P was decreased. The content of Ca in the leaves was inversely proportional to the drainage mixing rate. No treatment showed significant differences in photosynthesis and chlorophyll content, and in quality and productivity of the cut rose