논문 상세보기

기계학습을 통한 TIMSS 2011 중학생의 수학 성취도 관련 변수 탐색 KCI 등재

TIMSS 2011 Predictors Relating to Korean 8th Graders’ Mathematics Achievement, Explored Via Machine Learning

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/321771
서비스가 종료되어 열람이 제한될 수 있습니다.
교원교육 (Korean Journal of Teacher Education)
한국교원대학교 교육연구원 (Center For Education Research)
초록

본 연구는 기계학습적 접근법인 LASSO 기법을 우리나라 TIMSS 2011 중학교 2학년 자료 에 적용하였다. TIMSS의 100개의 설명변수를 모형에 모두 투입하여 22개 변수를 선택하였을 때, 이 모형의 예측정확도는 약 80%였다. 학생의 수학적 자기효능감, 수학에 대한 태도, 어머 니의 교육 수준, 그리고 가정 보유 장서 수와 같은 가정의 교육자원 변수가 학생의 수학 성취 수준에 영향을 미치는 것으로 나타났으며, 이는 기존 연구 결과와 일치하였다. 본 연구에서 학 생의 수학 성취수준과 관련과 있다고 새롭게 탐색된 변수로 수학숙제 시간, 학생의 과학적 자 기효능감, 과학숙제 부여 빈도 등이 있었다. 연구 함의 및 향후 연구 주제 또한 논의되었다.

A substantial body of research has been conducted on factors relating to students’ math achievement with TIMSS. However, most studies have focused on selected a few factors instead of utilizing hundreds of variables TIMSS provides, and have employed conventional statistical methods. This study aimed to investigate possible sets of predictors from a totally different approach: LASSO, currently one of the most popular machine learning techniques. Korean 8th graders’ TIMSS 2011 were used as the sample, and the prediction accuracy of the LASSO model was about 80% with the selected 22 out of 100 predictors. As results, students’ math efficacy, attitudes toward math, mother’s education level, and home educational resources including amount of books at home were influential to their math achievement, which was consistent with previous studies. Additionally, math homework completion time, student’s science self-efficacy, and science homework frequency were newly found important predictors. Implications and future research topics are discussed.

저자
  • 유진은(한국교원대학교) | Yoo, Jin Eun