논문 상세보기

신경망을 이용한 근사 해석 모델의 원형 개발 KCI 등재

Development of the Prototype of the Approximate Analytical Model Using the Neural Networks

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/323470
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

대량의 복잡한 비선형적인 관계도 단순화의 과정 없이 연관 관계를 자체 조직화 할 수 있는 인간의 뇌와 가장 유사한 병렬 연산 모델인 인공 신경 회로망을 구조 해석 분야에 도입하였다. 본 논문은 스터브 거더의 거동 예측을 위한 신경망 근사해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 단순 보의 처짐 문제와 같은 정확해를 구할 수 있는 문제로부터 신경망 근사해석모델의 원형 (prototype)을 제시하고 검증하는데 목적이 있다.

In the structural analysis, artificial neural networks as a parallel computational model that is similar to the human brain and can self-organize complex nonlinear relationships without making assumptions is introduced. The purpose of this paper is to develop the Neural Network for Approximate Structural Analysis(NNASA) to predict the behaviour of the stub-girder system. As an initial stage, the paper presents the development of the prototype of NNASA based on the problem related to the deflection of a simple beam, and shows the verification of this model by two examples.

저자
  • 이승창(한양대학교 건축공학과) | Lee Seung Chang
  • 박승권(한양대학교 전자통신공학과) | Park Sung Kwon
  • 이병해(한양대학교 건축공학과) | Lee Byung Hai