본 논문은 신경망 근사 해석 모델의 원형을 스터브 거더의 거동 해석에 적용하고, 이 과정 중에 발생한 문제점을 파악하여 해결책을 제시함으로써, 앞서 개발한 원형 모델을 스터브 거더 시스템에 적합하도록 발전시키는데 목적이 있다. 스터브 거더의 해석 변수는 주어진 시간 내에 시뮬레이션이 가능하게 7개, 해석 결과값은 탄성 처짐뿐만 아니라 응력까지 고려하여 총 4개의 결과값을 동시에 고려하고, 학습 패턴 수는 총 143개를 사용하였다. 근사해석의 정확도를 향상시키고 학습의 수렴성을 보장하기 위하여 다양한 시뮬레이션을 수행하여 은닉층 뉴런 수, 학습 패턴 그리고 최대 에러의 관계를 규명하고, 이 결과를 바탕으로 신경망 근사 해석 모델 개발 단계를 수정하여 제안하였다.
대량의 복잡한 비선형적인 관계도 단순화의 과정 없이 연관 관계를 자체 조직화 할 수 있는 인간의 뇌와 가장 유사한 병렬 연산 모델인 인공 신경 회로망을 구조 해석 분야에 도입하였다. 본 논문은 스터브 거더의 거동 예측을 위한 신경망 근사해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 단순 보의 처짐 문제와 같은 정확해를 구할 수 있는 문제로부터 신경망 근사해석모델의 원형 (prototype)을 제시하고 검증하는데 목적이 있다.
본 논문은 신경망 근사 해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 기존의 수치해석 알고리즘과의 성능 비교를 통하여 신경망 알고리즘의 특성과 역할을 수치해석의 관점에서 정확히 판단하는데 목적이 있다. 신경망 알고리즘을 변형하여 선형 연립 방정식의 해를 구하는 두가지 방법을 제안하였고, 회귀분석, 보간법과의 비교를 통하여 광범위한 근사자(universal approximator)로서의 역할을 보였다.