쉘형 구조물의 불안정 현상은 크게 뜀좌굴과 분기좌굴로 분류할 수 있다. 이들은 구조물의 형상특성, 특히 형상 초기불완전에 대해 매우 민감하게 반응한다. 본 연구에서는, 형상 초기불완전을 가진 쉘형 구조물의 불안정 거동을 파악하기 위해 양단이 힌지로 고정된 얕은 정현형 아치의 평형경로를 조사한다. 비선형 방정식을 얻기 위해 Galerkin법을 이용하였으며, 증분형 방정식으로의 변환은 섭동법을 이용하였다.
There are two kinds of instability phenomena for shell-type structures which are snap-through and bifurcation buckling. These are very sensitive according to the shape characteristics including rise-span ratio and especially shape initial imperfection. In this study, the equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated to grasp the instability behavior of shell-type structures with initial imperfection. The Galerkin method is used to get the nonlinear discretized equation of governing differential equation considering geometric nonlinearity of arches and the perturbation method is also used to transform the nonlinear equation to incremental form.