본 논문의 목적은 공간 트러스 비선형 해석기법에 대한 수치해석적 장단점을 비교하고, 효율적인 해석기법을 제안하는 것이다. 사용된 해석기법은 하중 제어법으로 뉴턴-랩슨법, 수정 뉴턴-랩슨법, 할선-뉴턴법, 하중-변위 제어법으로 호장법, 증분일 제어법, 그리고 본 논문에서 제안한 하중-변위의 복합적 제어법으로 복합 호장법 , 복합 호장법Ⅱ, 복합 증분일 제어법이 있다. 공간 트러스에 대한 해석기법의 효율성 평가를 위하여 해의 정확성, 수렴성, 계산시간 등을 제시된 예에 비교한 결과 본 논문에서 제안한 하중-변위의 복합적 제어법의 신뢰성을 입증하였으며, 기하학적 비선형 해석 및 좌굴후 거동의 추적에 있어서 효율적이었다. 특히, 자유도수가 많은 공간 트러스의 좌굴하중 추척에 있어서는 복합 증분일 제어법이 효율적이었다.
The purpose of this paper is to evaluate the efficiency of various solution techniques and propose new efficient solution techniques for space trusses. Solution techniques used in this study are three load control methods (Newton-Raphson Method, modified Newton-Raphson Method, Secant-Newton Method), two load-displacement control methods(Arc-length Method, Work Increment Control Method) and three combined load-displacement control methods(Combined Arc-length Method I , Combined Arc-length MethodⅡ, Combined Work Increment Control Method). To evaluate the efficiency of these solution techniques, we must examine accuracy of their solutions, convergences and computing times of numerical examples. The combined load-displacement control methods are the most efficient in the geometric nonlinear solution techniques and in tracing post-buckling behavior of space truss. The combined work increment control method is the most efficient in tracing the buckling load of spate trusses with high degrees of freedom.