본 연구는 제품 생산과정 시 해충혼입에 의한 소비자 해충 클레임 발생 가능성을 규명하고자 고농도 질소충진(98.6~98.8%) 유아용 캔 포장 분유제품에서의 화랑곡나방 알, 유충(4령)의 발육 가능성을 알아보았다. 고농도 질소가스와 일반 대기로 포장된 제품내부에서 보관기간에 따라 부화율, 우화율, 치사율 등을 조사하였고 포장해체 후 지속적으로 보관하면서 동일한 조사를 수행하였다. 실험 결과 질소충진 처리하였을 경우 보관기간에 관계없이 화랑곡나방 알과 유충은 100% 치사하였다. 그러나 질소가 충진되지 않은 처리구에서 유충 치사율은 대략 40%정도를 나타내었고, 보관 기간에 따라 유의한 차이는 보이지 않았다(df=2,27, F=2.06, P>0.05). 화랑곡나방 알의 경우 모든 반복에서 실크가 발견되어 부화가 이루어졌으나, 발육이 지속적으로 진행되었을 경우 발견되었을 것으로 예상되는 2~3령 유충이 발견되지 않아 분유제품이 갓 부화한 1령 유충의 먹이로는 적합하지 않은 것으로 조사되었다.
In case of rectangular lattice dome which shearing rigidity is very small, it has a concern to drop Buckling strength considerably by external force. So, by means of system to increase buckling-strength, there is a method of construction that lattice of dome is one with roof material. In a case like this, shearing rigidity of roof material increases buckling-strength of the whole of structure and can be designed economically from the viewpoint of practice. In case of analysis is achieved considering roof material that adheres to lattice of dame, there is method that considers the rigidity that use effective width frame as method to evaluate rigidity of roof material. therefore, this study is aimed at deciding effective width of roof material united with rectangular lattice dome to evaluate rigidity of roof material by effective width of frame and investigating how much does rigidity of roof material united with lattice of dome increase buckling-strength of the whole of structure according to rise-ratio. Conditions of loading are vertical-type-uniform loading. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems.
본 논문의 목적은 공간 트러스 비선형 해석기법에 대한 수치해석적 장단점을 비교하고, 효율적인 해석기법을 제안하는 것이다. 사용된 해석기법은 하중 제어법으로 뉴턴-랩슨법, 수정 뉴턴-랩슨법, 할선-뉴턴법, 하중-변위 제어법으로 호장법, 증분일 제어법, 그리고 본 논문에서 제안한 하중-변위의 복합적 제어법으로 복합 호장법 , 복합 호장법Ⅱ, 복합 증분일 제어법이 있다. 공간 트러스에 대한 해석기법의 효율성 평가를 위하여 해의 정확성, 수렴성, 계산시간 등을 제시된 예에 비교한 결과 본 논문에서 제안한 하중-변위의 복합적 제어법의 신뢰성을 입증하였으며, 기하학적 비선형 해석 및 좌굴후 거동의 추적에 있어서 효율적이었다. 특히, 자유도수가 많은 공간 트러스의 좌굴하중 추척에 있어서는 복합 증분일 제어법이 효율적이었다.
Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.
이 연구는 공간 트러스의 비선형 해석을 위한 해석기법의 수치해석적 효율성에 관한 것으로써, 좌굴 이후의 거동 파악이 가능한 복합 호장법을 제안하였다. 복합 호장범은 현 강성변수를 제어변수로 사용하여, 안정구간에서는 선취법이 첨가된 Secant-Newton법을 사용하여, 불안정구간에서는 가속법이 첨가된 호장법을 사용하는 방법이다. 해석기법의 효율성을 비교하기 위하여 제시된 수지예제에 대한 해의 정확성, 수렴성, 계산시간을 기존의 호장법과 비교하였다. 공간 트러스의 기하학적 비선형 해석에 있어서는 이 연구에서 제안된 복합 호장법이 기존의 호장법보다 수치 해석적 효율성이 뛰어난 것을 알 수 있었다.
This paper proposes structural analysis on the World Wide Web to form a part of the architectural design project. It purposes modeling space frames and a structural analysis program on the internet only by inputting basic data for forming a shape in the whole phase of space frame analysis. The analysis data is conducted by Oracle DBMS(DataBase Management System), GUI(Graphic User Internet) by Java Applet and connection with server and database by Java Servlet respectively. The result from modeling and analysis is provided as graphic and text file forms by web browsers. Programs can be executed irrespective of user's OS by using internet and highly-secured system is constructed taking advantage of Java. Of great efficiency is maintaining and recycling data as the whole is dealt by database from the beginning to the end of program.
In Single-layer latticed domes with rectangular network which is composed of ring of circumferential direction and rafter of longitudinal direction, that is, rib domes, if we use the cross-membered junction's method for the advantage in fabrication and construction, the eccentricity is occurred in the nodal point of crossing members. This paper is aimed at investigating the buckling characteristics for the effect of eccentricity according to rise-span ratios and distance of eccentricity. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. The maximum decreasing ratio of buckling strength due to the junction's eccentricity is about 60% in models of this paper. 2. In the increasing ratio of buckling strength for rise-span ratio, that of Type 3 models is larger than that of type 2 models. On the other hand, that of Type 2 mode is larger than that of Type 3 for eccentricity-distance. 3. In the viewpoint of the value of buckling strength, that of Type 2 models is larger than that of type 3 models. The effect of the junction's rigidity on buckling strength is not great for overall models. Therefore if we use the cross-membered junction's method for the advantage in fabrication and construction, the method of Type 2 will have the great advantage of that of Type 3.
Adsorption using highly porous and highly functionalized sorbents is a straightforward removal technology currently being employed, however the range of contaminants is limited. A novel sorbent was synthesized from activated carbon and Zr-based UiO66 metal organic framework to remove both cationic and oxyanionic metals from aqueous solutions. The composite was characterized using FSEM-EDS, FT-IR, XRD, and TGA, and showed successful integration of UiO66 on the surface of activated carbon. Batch adsorption tests with ICP-OES reveal that the composite has removal efficiency >95% for Pb (II), Cu (II), Se (IV), and As (V). The hybrid material is a promising sorbent for the removal of both cationic and oxyanionic metals for wastewater purification.
Concrete indicates highly alkaline through hydration reaction of mortars that were attached to the RCA's surface. In this study, the carbonation of concrete incorporating coated RCA was investigated through accelerated carbonation test. As a results, coated RCA was indicated to be better than normal RCA.