In this study, an α-Fe2O3 (hematite) coated porcelain plate was sintered in a temperature range from 1100 oC to 1250 oC using ferrous sulfate. The specimens were investigated by X-ray diffractometer (XRD), scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), and UV-visible spectrophotometer. It was confirmed that α-Fe2O3 (hematite) was densely fused to the surface at several tens of μm, the α-Fe2O3 (hematite) was in the form of thin platelet and polyhedra, and no other compounds appeared in the sintering process. In the specimen coated with α-Fe2O3 (hematite), the reflectance spectra show a red absorption band of 560-650 nm. The L* value decreased from 53.18 to 46.94 with the firing temperature. The values of a* and b* were at 19.03 and 15.25 at 1100 oC and gradually decreased with increasing temperature; these values decreased rapidly at 1250 oC to 11.54 and 7.98, respectively. It is considered that the new phases are formed by the phase transition of the porcelain plate (clay), and thus the a* and b* values are greatly influenced.