본 연구에서는 서브디비전 방법 중 루프 서브디비전 방법을 이용하여 초기의 데이터 값으로부터 몇 번의 서브디비전 과정을 거쳤을 때, 초기 데이터 점이 극한곡면 위에 있도록 곡면 재생성 방법을 구현하였으며, n번 서브디비전을 수행한 곡면의 정확도를 곡률과 좌표값의 상대오차로 평가하였다. 또한 절의 전반변형을 표현할 수 있는 일차 전단변형 루프 서브디비전 유한요소를 개발하였다. 새롭게 개발된 요소는 한 개의 절점에서 6개의 자유도를 가지고 전반 변형효과를 포함하는 일반화된 요소인데, 기저함수로 4차 박스-스플라인함수가 사용되었다. 평가 수치예제를 통해 서브디비전 꿸 요소의 성능을 평가/검증하였다. 본 연구에서 개발된 서브디비전 요소는 다중해상도 해석과 기하학적 모델링에 널리 사용될 수 있다.
In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.