Recently, high-rise residential buildings in Korea have adopted slender shear walls with irregular section shapes, such as T-shape, H-shape, and C-shape. In the seismic design of the slender shear walls, the transverse reinforcement for lateral confinement should be provided in the boundary elements to increase deformation capacity and subsequent ductility. However, in practice, the irregularity of the shear walls is not adequately considered, and the lateral confinement region is calculated for the rectangular wall segments. This study investigated the proper design method for lateral confinement regions using finite element analysis. The lateral confinement region was considered in analysis for two cases: 1) as a typical rectangular wall segment and 2) as an irregular wall. When the irregularity of the walls was considered, the compression zone depth was increased because the vertical reinforcement in the flange was addressed. The effect of lateral confinement design methods on the structural performance of the walls was directly compared under various design parameters, including the length of the flange, concrete compressive strength, vertical rebar layout, axial load ratio, and loading direction. According to the results of the parametric analysis, the peak strength and deformation capacity could be significantly increased when the lateral confinement region was calculated based on irregularly shaped walls, regardless of the design parameters. In addition, the effective compression zone was located within the lateral confinement region. Thus, it is recommended that the lateral confinement region of T-shaped walls is calculated by addressing the irregularity of the walls.
The precast concrete (PC) method allows for simple assembly and disassembly of structures; however, ensuring airtight connections is crucial to prevent energy loss and maintain optimal building performance. This study focuses on the analytical investigation of the shear capacity of precast ultra-high-performance concrete (UHPC) ribs combined with standard concrete PC cladding walls. Five specimens were tested under static loading conditions to evaluate their structural performance and the thermal behavior of the UHPC rib shear keys. Test results indicated that the specimens exhibited remarkable structural performance, with shear capacity approximately three times greater than that of standard concrete. Numerical models were subsequently developed to predict the shear capacity of the shear keys under various loading conditions. A comparison between the experimental results and finite element (FE) models showed a maximum strength difference of less than 10% and a rib displacement error of up to 1.76 mm. These findings demonstrated the efficiency of the FE model for the simulation of the behavior of structures.
PURPOSES : This study aims to evaluate the vertical displacement caused by differential drying shrinkage in concrete pavements within tunnels under various independent variables using structural analysis. METHODS : The behavior of differential drying shrinkage was assessed based on literature reviews of slab thickness and atmospheric humidity. The equivalent linear temperature difference (ELTD) values were analyzed using regression analysis. A three-dimensional solid element model of a two-lane highway tunnel section with six slabs was created using the ABAQUS finite element program by referring to standard drawings. Dowels and tie bars were placed in accordance with the highway standards of the Korean Highway Corporation. RESULTS : The results of a finite element analysis revealed no significant difference in vertical displacement owing to the type of slab base. However, thicker slabs exhibited a smaller vertical displacement. Additional dowels installed at the shoulder of the driving lane did not significantly inhibit vertical displacement. A narrower joint spacing resulted in a smaller vertical displacement. A comparison with field data from Tunnel A showed that the amount of differential drying shrinkage varied with the relative humidity of the atmosphere during different seasons. CONCLUSIONS : Increasing the slab thickness and reducing the joint spacing can improve driving performance by mitigating differential drying shrinkage during dry winter conditions. Future research will involve the creation of indoor test specimens to further analyze the behavior of differential drying shrinkage under varying conditions of relative humidity, slab base moisture, and wind presence.
Due to the rapid advancements in power distribution, television, and telecommunication, aerial cables have been rampant in urban cities. Aerial cables, while cost-effective, contribute to visual pollution, pose safety hazards, and complicate urban planning. To solve these challenges, many cities are exploring new ways to construct these cables without the use of high poles and one of the solutions is transitioning to underground cable by minitrenching method. Minitrenching offers a less invasive, more efficient solution for underground cable deployment. This study highlights the potential of innovative minitrenching materials to enhance underground cable protection while addressing the limitations of aerial cable installations in urban settings. Three minitrenching materials were evaluated to determine their effectiveness in protecting underground cables from heavy truck loads using finite element method (FEM). The materials tested were: (1) sand backfill with asphalt concrete surface, (2) cement mortar backfill with self-compacting mastic asphalt surface, and (3) cement mortar backfill with asphalt concrete surface. Results showed that the proposed materials (cement mortar and self-compacting mastic asphalt) significantly reduced strain on the underground cable compared to traditional materials (sand and asphalt concrete). The strain values decreased from 713 microstrains with traditional materials to 333 microstrains with the proposed materials, representing a reduction of approximately 53%. The third combination, intended as a maintenance material, yielded an intermediate strain value of 413 microstrains, demonstrating its acceptability as a minitrenching material.
국내에서는 고속도로에는 콘크리트 포장을 적용하고 있지만 도심지에서는 콘크리트의 양생기간으로 인해 장기간 교통차단이 필요없 는 아스팔트 포장을 주로 적용하고 있다. 그러나 아스팔트 포장은 공용수명이 길지 않아 잦은 유지보수 작업으로 인해 사용자들의 불 편을 초래하고 있다. 본 연구에서는 현장타설 콘크리트 포장 공법을 적용하더라도 즉시 통행이 가능한 포장 임시보호판 개발을 위하 여 임시보호판의 하부 지지보 설치 간격 최적화를 목적으로 3차원 유한요소해석 프로그램을 이용하여 차륜 하중에 대한 응력분포를 분석하였다. 해석에 사용된 임시보호판은 길이 6m, 폭 3m, 두께 0.3m의 콘크리트 슬래브로 구성하였으며, 임시보호판의 하부 지지보 간격을 0.5m, 1m, 1.5m, 3m, 6m로 구성하였다. 하중 조건은 중차량인 버스를 고려하여 타이어 접지 면적당 33,540N의 분포하중을 지지 보 사이에 적용하여 분석하였다. 해석 결과, 하부 지지보 사이의 간격이 좁아질수록 응력이 감소하는 것을 확인하였다.
국내에는 지형적인 조건 또는 그 외의 여러 제약에 따라 줄눈 콘크리트 포장(JCP)을 시공하는 경우가 많았다. JCP는 시공 이후 양생 제로 도포함에도 불구하고 시간이 지남에 따라 부등건조수축이 나타나, 운전자의 승차감과 안정성을 악화시킨다. 이를 해결하기 위해 포장설계 지침을 지속적으로 개정하고 있지만, 부등건조수축으로 인한 민원이 계속 발생하고 있는 실정이다. 본 연구에서는 JCP의 부등건조수축량에 영향을 줄 수 있는 변수를 설정하여 변수에 따른 거동 차이를 보고자 하였다. 3D 유한요소해 석 프로그램 ABAQUS를 이용하여 유한요소법을 통한 해석을 진행하였고, 모델링은 2차로 6 슬래브를 모형화하였다. JCP의 부등건조 수축량에 영향을 주는 슬래브 깊이별 온도변화가 포장설계에 따라 어떻게 변화하는지 고려하기 위하여, 그에 대한 변수로 하부층 종 류의 영향, 슬래브 두께의 영향, 주행차로 다웰바 추가 설치 유무의 영향, 줄눈 간격의 영향을 설정하였다. 기본적인 모델의 유한요소해석 부등건조수축량 결과와 위에서 설정한 변수를 적용하여 만든 모델에 대한 유한요소해석 부등건조수축 량 결과를 각각 도출하였고, 기본 모델 결과와 변수를 적용한 모델 결과를 비교하여 각각의 인자가 어느 정도의 영향을 미치는지 확 인해 보았다. 영향이 큰 인자들을 선별하여 복합적인 변수에 대한 영향을 보고자 하였고, 복합 변수를 적용한 모델의 유한요소해석 부등건조수축 량 결과와 기본 모델의 유항요소해석 부등건조수축량 결과를 비교하여 그 차이가 어느 정도인지 확인하였다. 이에 따라 앞으로 JCP구 간 부등건조수축에 대한 해결을 위해 중점을 두어야 할 인자를 파악할 수 있었으며, 결과를 현장에 적절하게 적용한다면 도로 주행성 과 안전성을 개선할 수 있을 것으로 판단된다. 유한요소해석 결과에 대한 신뢰도를 부여하기 위해 현장 데이터와도 비교 분석하였고, 계절에 따라 약간의 차이는 있었으나, 평균값 과는 유사하여 본 연구의 구조해석 모형이 다양한 조건에 따른 연직변위 발생함에 있어 비교하는데 유용하다고 판단하였다.
The amount of deflection that affect deflection caused by the load of steel board used to support concrete blocks were analyzed. By eliminating the central area of the cross section of board, it was possible to design a new board that reduces the weight of the board by about 50% while increasing the deflection by only about 10% for 5000N load. Since the deflection of the board is inversely proportional to the moment of inertia for area, it is most important to increase the cross-sectional height of the board to reduce the deflection, followed by the thickness of the upper and lower plates, and the thickness of the internal forming material played the smallest role. The other parts, the side supporting parts and reinforcing parts, were found to play a negligible role in preventing deflection. Applying the results of this study, we can predict the amount of board deflection and find the effective cross-sectional design of board without exceeding the deflection limit.
최근 프리팹 부재간 비간섭 계면이음 설계기술이 도입되고 기계주입식 충진 기술의 실용화 성공으 로, 교량 프리캐스트 바닥판 시공의 저해요인이 상당히 해결될 수 있다. 이 때 프리팹 부재에 GFRP 보강근을 적용한다면 가공조립비 절감 효과가 있고, 프리팹 부재의 경량화로 경제성이 제고될 뿐 만 아니라, 현장 안전성과 작업편의성이 향상될 것으로 보인다. 기존 철근 연신율은 20% 내외 수준인데 반해 GFRP 보강근의 파괴변형율은 3% 내외이며 탄성계수는 50GPa (강재 대비 25%수준)이므로, 이 러한 재료특성 차이로 인한 휨성능에 대한 영향 평가가 필요하다. 특히 GFRP 보강근을 프리캐스트 바닥판과 거더 간 계면이음 적용에 따른 영향을 평가하기 위한 프로토타입 거더를 설계하고, 재료간 계면의 부착 특성을 고려한 유한요소해석 모델을 수립하고 극한 휨성능과 소요 계면 전단성능과의 상 관관계를 검토하였다. 추후 본 변수해석 연구에 대해 실험적 검증이 완수된다면, GFRP 보강근 설계기 술을 정립하는 데 기여할 것으로 기대된다.
본 논문은 초탄성 형상기억합금의 복원성능에 의해 지속적으로 사용이 가능하고 마찰볼트 적용으로 에너지 소산 능력이 우수한 에너지 소산형 댐퍼를 제안하고 성능의 우수성을 입증하기 위해 구조용 탄소강이 적용된 댐퍼와 함께 해석을 통한 결과 비교 분석을 진행하였다. 해석결과에 대해 최대하중, 잔류변위, 에너지 소산등의 분석을 진행하여 초탄성 형상기억합금이 적용된 댐퍼의 우수성을 입증하였 으며, 해석 결과로 초탄성 형상기억합금이 적용됨에 따라 하중 성능과 잔류변위의 회복성능이 상당히 개선됨을 확인하였다. 최대하중의 경우 SSF댐퍼가 382.60kN으로 가장 우수하였으며 잔류변위의 경우 마찰볼트가 적용되지 않은 SS10, SS15가 0mm로 가장 우수한 회복거동을 보였다. 에너지소산의 경우 마찰볼트와 재료의 항복에 의한 연성효과가 우수한 CSF15가 가장 우수한 성능에 대한 거동 특성을 파악한다.
최근 Carbon Fiber Sheets(CFS)를 이용하여 철근콘크리트(RC) 기둥을 보강하는 방법이 널리 사용 되고 있다. 기존 연구들은 대부분 원형 단면을 가진 RC 기둥에 초점을 맞추고 있는 반면, 사각 단면 을 가진 RC 기둥에 대한 연구는 비교적 제한적이다. 특히 실험 결과를 예측하기 위한 해석적 연구는 실험적 연구에 비해 제한적으로 수행되었다. 따라서 본 연구에서는 CFS로 횡구속된 RC 기둥의 횡구 속 효과를 예측하기 위한 해석적 연구결과를 제시한다. CFS로 횡구속된 RC 기둥의 횡구속 효과를 예 측하기 위해 상용 구조해석 프로그램인 ABAQUS를 이용하여 유한요소해석이 수행되었다. 유한요소해 석 시 콘크리트는 Solid 요소로 모델링 되었으며, 철근과 CFS는 각각 Beam 요소 및 Shell 요소로 모 델링 되었다. 또한 콘크리트와 철근은 일체 거동하는 것으로 가정되었으며, CFS와 콘크리트는 완전부 착하는 것으로 가정되었다. 실험결과와 해석결과의 파괴양상을 분석하였을 때, 본 연구에서 제안된 유 한요소해석 모델은 실험체의 부착파괴를 적절히 모사할 수 있는 것으로 나타났다. 또한 해석을 통해 예측된 극한응력에 대한 실험결과의 오차는 평균 2.97%로 나타났으며, 극한응력 시의 축방향 변형률 및 횡방향 변형률은 실험결과와 비교하여 각각 평균 17.32% 및 9.52%의 오차를 나타내었다. 따라서 제안된 해석모델은 CFS로 횡구속된 RC 기둥의 횡구속 효과를 비교적 잘 예측할 수 있는 것으로 판 단된다.
Non-uniform reinforced concrete brace facade systems are newly considered to improve seismic performance of reinforced concrete frame buildings under lateral load. For normal and high strength concrete of 30MPa, 80MPa, and 120MPa, the cross-sections of reinforced concrete brace facade systems were designed as different size with same amount of reinforcements. The strengthened frame systems were analyzed by a non-linear two-dimensional finite element technique which was considering material non-linearities of concrete and reinforcing bars under monotonic and cyclic loadings. From the study of non-linear analysis of the systems, therefore, it was provided that the proposed braced facade systems were reliable to improve laterally load-carrying capacity and minimize damages of concrete members through comparisons of load-displacement curves, crack patterns, and stress distributions of reinforcing bars predicted by current non-linear finite element analysis of frame specimens.
본 연구는 특수한 조건에서의 줄눈 콘크리트포장의 설계 및 성능에 관한 분석을 목적으로 한다. 줄눈 콘크리트포장은 시멘트 콘크리트 포장의 한 형태로, 오랜 기간 도로 포장형식으로 사용되어 왔다. 이 포장 방식은 철근을 사용하지 않는 대신, 콘크리트 슬래브의 균열을 줄눈을 통해 유도하고, 다월바와 타이바를 통해 슬래브에 생기는 응력을 줄이는 방식이 다. 대한민국의 다양한 지역 환경과 계절적 특성은 도로 포장설계에 주요한 인자로 적용된다. 특히, 슬래브의 부등건조수 축이 평탄성 문제의 주요 원인으로 지적되며, 이는 온습도의 변화에 의해 발생한다. 본 연구에서는 3차원 유한요소해석 을 활용하여 줄눈 콘크리트포장 슬래브의 거동을 분석하고, 콘크리트 슬래브의 두께, 줄눈 간격, 타이바 및 다웰바의 배 치 등 주요 설계 변수의 영향을 평가한다. 이러한 설계 인자들이 슬래브의 응력과 변위에 미치는 영향을 확인하며, 다양 한 환경 조건 하에서의 설계 방법의 유효성을 검증한다. 본 연구는 줄눈 콘크리트포장의 실제 배치 방식을 모델링하여, 기존 설계 방식의 보안 사항을 파악하고, 설계 기준 내에서의 주요 인자 변화를 통해 부등건조수축을 완화할 수 있는 방 안을 제시한다. 이를 통해, 특수 환경 조건에서의 온습도 영향을 고려한 효율적인 포장 설계 방안을 도출함으로써, 도로 포장의 평탄성과 내구성 향상에 기여하고자 한다.
구조물의 동적 해석 자동화는 구조 통합 시스템에서 중요한 역할을 한다. 해석 결과에 따른 신속한 대피 또는 경고 조치가 신속하게 이루어지도록 해석 모듈은 짧은 실시간에 해석 결과를 출력해야 한다. 구조 해석법으로 세계적으로 가장 많이 사용되는 방법은 유한 요소법이다. 유한요소법이 널리 사용되는 이유 중 하나는 사용의 편리다. 그러나 사용자가 유한요소망을 입력해야 하는데 요소망의 요소 수는 계상량과 정비례하고 요소망의 적절성은 에러와 연관된다. 본 연구는 시간 영역 동적 해석에서 전 단계 해석 결과를 사용하 여 계산된 대표 변형률 값으로 오차를 평가하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하 는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보와 간단한 프레임 예제를 통하여 적절한 요소망 형성, 정확성, 그리고 연 산 효율성을 검증하였다. 이 방법의 간단함이 지진 하중, 풍하중, 비선형 해석 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용 될 수 있는 것을 보여 준다.
Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.
PURPOSES : This study was conducted to investigate the stress distribution and resulting effects in the joint between CRCP and JCP when temperature deformation occurs. METHODS : The tie bars, CRCP and JCP pavements, and lean concrete base were created as three-dimensional finite element models using ABAQUS, a general-purpose finite element analysis program. Contact stress analysis was performed between rebar and JCP and between JCP and lean concrete base layer. In the section where stress concentration occurred, the degree of damage was estimated using the CDP model. RESULTS : Since the domestic CRCP does not have a separation layer between the base layer and the surface layer, it was found that when connected to a JCP where the base layer and the surface layer are completely separated, stress concentration occurs around the tie bar at the connection point. Analysis results using the CDP model showed that 25 to 32 mm around the reinforcing bar exceeded the elastic range of concrete. CONCLUSIONS : At the point where CRCP and JCP are connected, local stress concentration is inevitable because the friction and bonding conditions with the base layer and the degree of curling deformation restraint by CRCP rebars are different, and design improvement is expected through life cycle cost and long-term measurement analysis.
본 논문에서는 유한요소해석 프로그램을 통해 파괴 거동 유형별 철근콘크리트 기둥 및 폭발 하중을 모델링하였으며, 실제 실험과 의 동적 응답을 비교하여 모델의 적합성을 입증하였다. 개발한 모델을 이용하여 폭발 하중에 대한 부재의 동적 응답을 확인하기 위해 폭발 하중 시나리오를 설정하였으며 해당 시나리오별 폭발 하중에 대한 시간에 따른 변위 및 응력 결과를 도출하였다. 동적 응답을 통 해 폭발 하중에 대한 기둥의 성능평가(Ductility, Residual)를 수행하였으며 이를 비교 및 분석하였다.
Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.