이 연구는 다목적 선박(MPV)의 공기역학적 구조물 설계, 분석 및 향상을 통해 그린 워터 압력에 의한 구조적 안전을 보장하고, 탈탄소화 및 에너지 효율성에 이바지하는 방법을 기술하였다. 유한 요소 분석(FEA)을 통한 초기 평가에서 좌굴 발생에 대한 잠재적인 취약점 이 있음을 확인하였다. 이러한 문제를 해결하기 위해 보강재(Carling stiffener)와 두께 증가를 통하여 응력을 재분배하고 국부적인 좌굴 발생의 위험을 최소화하였다. 보강 후 분석 결과, 한국선급(KR)의 안전 기준인 항복 강도, 미국 선급(ABS) 좌굴 강도 및 노르웨이 표준(NORSOK) 변 위 기준을 모두 충족하는 것이 확인되었다. 결과적으로 고유치 좌굴 해석 결과가 안전 기준을 초과하고 최대 변위가 허용 한계 내에 있는 등 중요한 개선이 이루어졌다. 이러한 개선은 극한의 해양 조건에서 운영 신뢰성을 보장할 수 있다. 이 연구는 공기역학적 항력 감소와 구조적 안전성의 이중적인 이점을 강조하며, 국제 해사 기구(IMO)의 2050 탈탄소화 목표에 부합하는 연료 효율성 및 온실가스 배출 감소에 이바지할 수 있다. 연구 결과는 다양한 선박 유형에 걸쳐 항력 감소 기술을 확장하기 위한 기초 자료를 제공하며, 지속 가능하고 탄력적인 해양 운영을 위한 대안을 제시하였다. 향후 연구는 구조적 안전 평가를 가속할 수 있는 단순화된 모델링 기술 개발에 집중할 것이다.
연안에서 주로 사용하고 있는 파워보트(Power boat)와 워크보트(Work boat)는 주로 섬유강화플라스틱(Fiber reinforced plastic, 섬유 강화플라스틱)을 주재료로 제작됐으나 2000년대에 들어오면서 섬유강화플라스틱 선체에 대한 환경오염 및 해양 안전에 관한 법규 규제가 강화로 규제되고 있다. 즉, 섬유강화플라스틱은 재활용할 수 없으며 폐기 시 자연에서 분해되는 데 100년 이상 걸리는 매우 반환경적 특 성이 있다. 고밀도폴리에틸렌(High density polyethylene) 소재 적용 선박은 기존의 섬유강화플라스틱 선박에 비해 가벼워 부력이 높고, 내충 격성이 뛰어날 뿐 아니라 유해 물질 발생이 없으므로 폐선 시 100% 재활용이 가능하다. 최근 친환경 소형 선박 소재로 주목받고 있고, 국 내 연해에 항해하는 중, 소형 선박의 선체용 소재로 활용 가치가 높을 것으로 기대되고 있다. 연구에서는 고속 경구 조선 기준에 만족하 는 구조 강도 안전성을 검토하였고, 상세 유한요소모델링 기반으로 항복강도 및 좌굴강도를 검토하였다. 외력 작용 시 선체와 연결된 선 루 구조 강도를 종합적으로 검토하기 위하여 상세 모델링이 적용되었고, 구조해석 결과 적용 시 선저판 두께를 150% 증가시키는 변경을 반영하였다. 하중조합 별 각 패널에서의 좌굴강도 평가를 수행하였으며, 연구에서 수행한 주요 절차들은 향후 고밀도폴리에틸렌을 소재 로 한 중, 소형 선박의 구조 안전성 평가 시 좋은 참고 자료가 될 것으로 기대된다.
최근 개발 및 상용화가 되는 해상풍력발전기의 용량이 15MW로 증가하면서 나셀 중량의 증가와 함께 블레이드와 타워의 크기 가 증가하고 있다. 원통 형상의 타워는 단순한 구조 형상을 갖고 있지만 블레이드가 회전하면서 발생하는 추력과 모멘트, 나셀과 블레이 드의 자중 그리고 타워 자체가 받는 풍하중에 매우 안전하게 지지해야 하는 아주 중요한 구성 요소이다. 다른 요소에 비해 파손이 발생하 면 파생되는 손실 위험도가 매우 크고 풍력발전기 가격의 25%를 차지한다. 본 연구의 주요 대상은 풍력발전기 타워이며, 복잡한 시간 이 력 하중 조합에 의한 구조 안전성 평가를 더욱 직관적으로 검증할 수 있는 단순화된 평가법을 제안하고자 한다. 구조 안전성 평가를 위해 서 사용된 프로그램은 NASTRAN이며 적용 하중은 풍력발전기 해석을 통하여 계산된 면내 전단하중 정보를 적용하였다. 신속한 구조 안 전성 검토를 위하여, 복잡한 하중 조합 조건을 단순화하고, 극한하중과 좌굴 그리고 피로수명까지 순차적으로 검토하였다. 유한요소해석 법에 따른 최소 수명 지점인 can 용접부를 EUROCODE 3에 의해서 계산하면 112.5년으로 평가하며 변동 피로 하중을 고려하는 방식이 다르고, 코드에서는 경험 계수를 고려하고 있어서 직접 비교는 어렵지만 유사한 경향은 확인할 수 있었다. 연구를 통하여 제시된 면내 하중 조합법을 이용하면 이른 시일 안에 타워의 구조 안전성을 검증이 가능하며 이에 따라 최종중량에 대한 확신을 높일 수가 있다.
선박 건조 과정에서 블록이나 장비를 지지하는 A형 캐리어 구조는 하중 변경과 시간이 지남에 따라 점차 변형이 증가하며, 이 에 따라 블록과 접촉하는 면적이 감소하고 분산된 하중에서 집중된 하중으로 패턴이 변화한다. 이러한 현상은 실제 사용 하중을 오판할 가능성이 있다. 특히 A형 캐리어는 영세한 제조 업체에서 자주 사용하고 있으며, 별도의 엔지니어링 기능이 없는 상황이 대부분이라서 손 쉽게 캐리어의 안전사용하중을 계산하는 방법의 개발이 필요하다. 본 연구는 A형 캐리어가 장기적으로 안전하게 사용할 수 있는 하중을 신속하게 평가하는 방법을 제안함으로써, 하중 분포의 변화에 따른 소성 변형과 그로 인한 안전 문제를 예측하고 대응할 수 있다. 제안된 방법은 캐리어의 중앙 집중하중과 전체 분포하중 조건에 대해서 유한요소해석(빔, 쉘 모델링)을 통한 결과를 기반으로 빔-이론을 수정하 여 제안되었다. 빔 모델링에서 집중하중 조건은 보정계수 0.73, 분포하중에서는 0.69를 이론값에 곱해서 안전사용하중이 가능하다. 쉘 모 델링의 경우, 집중하중은 0.75와 분포하중은 0.69를 사용할 수 있다. 본 연구는 선박 건조 작업 현장의 안전을 개선하고, 실제 작업 환경에 서의 안전 사용 하중 판단에 신속하고 효과적인 결정을 내릴 수 있는 기초 자료로 활용될 수 있다.
해상풍력발전 시장의 성장과 함께 해상풍력발전기 설치 선 시장에 대한 기대감이 커지고 있다. 해상풍력발전 시장 내 2030년까 지 약 100척의 설치 선이 필요할 것으로 전망되고 있다. 척당 가격이 3,000∼4,000억 원이라서 일반 운반선보다 고부가가치 시장이다. 특 히, 풍력발전기 용량이 11MW 이상의 대형 설치 선의 수요가 커지고 있다. 중국을 중심으로 아시아 해상풍력발전기 시장의 급성장으로 이 지역에서 운용 가능한 설치 선에 대한 발주에 대한 협의가 많다. 아시아권역 대부분의 해저 지질은 지지 반력이 작은 점토층으로 구성되 어 있다. 이러한 특성에 의해서 설치 선이 작업을 위해 수면 밖으로 오르고 내림 시 스퍼드캔(Spudcan)과 레그(Leg)의 관입 깊이가 크게 발 생한다. 연구에서는 최소 3m에서 최대 21m까지 관입 변수를 이용하여 관입 깊이에 따른 고유 진동 주기, 레그의 구조 안전성 평가 그리고 전복 안전성 지수를 평가하였다. 관입 깊이가 증가하면 고유 진동 주기가 짧아지고, 레그의 모멘트 길이가 짧아져서 구조 강도의 여유 치 가 증가한다. 모든 입사각에서 전복 모멘트에 대해 안전하며, 최댓값은 270도에서 발생한다. 본 연구를 통하여 검토된 조건들은 연약 지반 에서 설치 선의 운용 절차서를 작성 시 관입 깊이에 따라서 레그를 어떻게 운용해야 하는지 판단할 수 있는 중요한 자료로 활용할 수 있 다. 결론적으로 관입 깊이에 따른 레그 구조 안전성을 정확히 파악하는 것은 설치 선의 안전과 직결된 문제이다.
선박이 부두에 안전하게 계류 및 예인하기 위해서는 관련 국제규정에 부합하는 설계를 해야 한다. 그러나 현재까지도 일부 소 형 조선소 및 설계 회사에서는 그 내용을 정확히 숙지하지 못하고 있는 경우가 많다. 따라서 본 논문에서는 예인 및 계류설비에 관한 국 제규정을 살펴보고, 최신 발효된 MEG4(Mooring equipment guideline 4) 기준에 만족하는 대표적인 계류 의장품인 볼라드(Bollard)와 쵸크 (Chock)를 개발하고자 한다. 볼라드는 계류 밧줄을 선체에 고박하기 위한 의장품이며, 일반적으로 2개의 기둥으로, 대부분은 8자 매듭 형 태로 사용하고 있다. 쵸크는 선외에서 선내로 들어오는 계류 밧줄의 방향을 전환하고, 밧줄의 손상을 방지하기 위하여 곡률을 갖는 주물 방식으로 제작한다. 이 두 가지 계류 의장품은 선박의 선수와 선미, 중앙부 측면에서 많이 사용되고 있다. 최근 컨테이너선 및 LNG 운반 선의 크기 증가로 인하여, 계류 밧줄 하중이 증가하고 있으며, 계류 의장품도 안전사용하중(Safe working load)이 변경되어야 한다. 본 연구 에서는 유한요소해석 모델링을 통한 허용응력 평가법 결과를 정리하고, 분석하였다. 추가적으로 비선형 붕괴 거동 평가를 통하여, 안전사 용하중 결정에 대한 검증을 수행하였고, 탄성영역 내 설계가 되었음을 확인하였다. 연구에서 제안하는 평가법 및 기준, 그리고 해석절차 는 향후 유사 의장품 개발 시 참조가 가능하다.
선박 및 교량 구조물은 일종의 길이가 긴 박스형 구조로서 수직 굽힘 모멘트에 대한 저항력이 설계의 주요 인자이다. 특히 선박 거더는 반복적으로 불규칙적인 파랑하중에 장시간 노출되어 있기 때문에 구조부재의 연속 붕괴 거동을 정확하게 예측하는 것이 무엇보다 도 중요하다. 본 논문에서는 순수 휨모멘트를 받는 박스거더의 하중 변화에 따른 좌굴을 포함한 소성 붕괴 거동을 수치해석적 방법을 이용 하여 분석하였다. 분석대상은 Gordo 실험에서 사용한 세 가지 박스거더로 선정하였다. 구조강도 실험 결과와 비선형 유한요소해석에 의한 결과를 비교하여 차이가 발생하는 원인에 대해서 고찰하였다. 본 논문에서는 카본스틸 재료의 제작 시 필연적으로 사용하는 용접열에 의한 초기 처짐의 영향을 반영하기 위하여 전체와 국부적인 처짐 형상의 조합을 제안하였고, 이 결과는 실험 결과와 거동 및 최종강도 추정율이 7% 이내에서 잘 일치하고 있었다. 논문에서 검토한 절차 및 초기 처짐 구성에 대한 내용은 향후 유사 구조물의 최종강도를 분석하는데 좋 은 지침으로 사용할 수 있다.
국제유가가 배럴당 85달러에서 하반기에는 최대 100달러까지 오를 것으로 예상하여 세계 시장에서 해양플랜트 발주가 늘어 날 가능성이 크다. 해양플랜트의 주요 특징 중 한 가지는 탑사이드에 대형 헬리데크가 위치하며 경량화 및 내부식성을 위하여 알루미 늄 합금을 구조의 기본 재료로 사용하고 있다. 선주사는 긴급 상황 발생 시 신속한 인명 대피를 위하여 헬리콥터 크기를 대형화하는 추세이고, 헬리콥터를 데크에 안정적으로 고박할 수 있는 장치의 안전사용하중도 증가가 필요하다. 알루미늄 재질의 특성상 용접에 의 한 구조 강도 저하가 크기 때문에, 고정 장치는 데크에 매립하여 볼트로 고정하는 방식으로 설계가 필요하다. 본 연구에서는 대형 헬 리데크(직경=28m)에 사용이 가능한 헬리콥터 고정 장치를 개발하기 위하여 알루미늄 합금 6082-T6를 적용한 모델을 개발하였다. 개발 된 고정 장치는 실제 고박에 사용하는 하중 조건을 만족하도록 비선형구조 강도 계산을 통하여 검증하였다. 45도 경사각을 갖는 하중 조건은 국부적인 소성 붕괴로 인하여 90도 조건에 비해 낮은 최종강도를 나타냈다. 최종 모델에 대한 비선형 구조 붕괴 거동은 강도 실험과 경향이 유사하게 나타났다. 본 연구에서 도출한 주요 내용은 유사 알루미늄 기자재의 구조 강도 검토 시 참고 문헌이 될 것으 로 판단된다.
한 척의 선박을 건조하기 위해서는 다양한 크기의 블록(block)들을 이동 및 탑재해야 한다. 이러한 과정에서 블록의 체결 방법 및 각 조선소 설비 특성에 맞는 다양한 기능에 부합하는 러그를 사용하고 있다. 블록 구조의 중량 및 형태에 따라서 러그의 크기와 형상이 다양하며, 샤클(shackle)이 체결되는 홀 주변에 부족한 강성을 보완하기 위하여 덧판(doubling pad)을 용접하여 구조를 보강한다. 리프팅 (lifting) 조건별 러그의 설계를 하는 방법은 보 이론(beam theory)에 의한 수계산 방법과 유한요소해석 모델링을 이용한 구조해석을 수행하고 있다. 해석적 방법의 경우, 요소의 종류와 모델링 방법에 따라서 결과 차이가 발생하여 표준화된 평가법의 정립이 필요한 상황이다. 이러한 모호한 방법론 적용 시 블록의 이동 및 반전(turn-over) 과정 중에서 심각한 안전 문제를 유발할 가능성이 있다. 본 연구에서는 러그의 실제 탑재공정에 따른 구조 응답을 평가할 수 있는 모델링 조건, 평가법을 확정하고자 다양한 변수의 영향을 수치 구조해석을 통하여 비교 및 분석하였다. 러그 홀(hole) 주변 덧판부와 용접 비드(bead)를 표현한 모델링 기법이 가장 실제적인 거동 결과를 주고 있다. 실제 러그와 동일 한 조건(용접부 비드만 주재료와 연결)의 모델링에 등가하중을 적용한 결과는 MPC 하중 적용 결과보다 낮은 최종강도를 나타낸다. 더불어 해석 시간 단축을 위해서 2차원 쉘(shell) 요소를 적용한 경우, 덧판 두께를 85% 수준으로 감소시켜서 안전사용하중을 예측할 수 있음을 확 인하였다. 논문에서 검토한 다양한 변수의 영향들 결과는 러그 설계 및 안전사용하중 예측에 근거 자료로 활용될 것으로 기대된다.
코로나 19 팬데믹 및 기후 변화 등으로 전 세계적으로 필수적인 생필품과 자원의 품귀 이슈가 지속해서 발생하고 있다. 이러한 현상을 극복하고자 교역량의 수요가 갑자기 증가하였으며 이 결과 컨테이너선의 운임이 대폭 상승하였다. 컨테이너선의 크기 변화는 1960 년대 1,500TEU(twenty-foot equivalent unit)를 시작으로 2021년에는 24,400TEU로 대형화가 진행되고 있다. 컨테이너 적재 능력의 향상은 라싱브 릿지 구조의 대형화와 긴밀하게 연관되어 있고, 안전한 컨테이너 고박 및 항해 시 발생하는 다양한 외력 하중에 안전한 구조설계를 해야 한다. 현재 주요 선급에서는 라싱브릿지 구조 안전성을 평가할 수 있는 구조해석 기반의 지침서를 배포하고 있으나, 허용기준 및 평가 방 법이 달라서 설계 시 엔지니어들에게 혼선을 주고 있다. 본 연구에서는 결과에 영향을 줄 가능성이 큰 주요 변수들(모델링 범위, 오프닝 고 려 여부, 메쉬 크기) 변화에 따른 강도 변화 특성을 정리하였다. 이 결과를 바탕으로 저자들은 합리적인 구조해석 기반 평가에 대한 검토사 항을 제안하였고, 추후 선급 기준 개정 시 참고가 될 수 있을 것으로 기대한다.