검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to improve pedestrian safety by analyzing the effectiveness of displaying the remaining time of red crosswalk signal that provide pedestrians with information regarding the time available for crossing METHODS : This study analyzes the effectiveness of newly installed displays for remaining time of the red pedestrian signal in the cities of Yeongcheon and Yeongju in Gyeongsangbuk-do. The data collection was divided into periods before and after the installation of the facilities. Pedestrian departure delays were measured at the introduction and subsequent stages of installation, and changes in pedestrian behavior were quantitatively analyzed. Statistical significance of the results was verified using a t-test. RESULTS : For the displays of remaining time of crosswalk red signals installed in Yeongju, the pedestrian departure loss time decreased from 3.36 seconds before installation to 1.85 seconds after installation. Additionally, compared to the pre-installation situation, the postinstallation situation showed a relatively lower standard deviation, indicating that the pedestrians exhibited a more consistent pattern when starting to cross. Similarly, for the displays of remaining time of crosswalk red signal installed in Yeongcheon, the pedestrian departure loss time decreased from 2.37 seconds before installation to 1.89 seconds after installation. As in Yeongju, the post-installation situation showed a relatively lower standard deviation, indicating that the pedestrians exhibited a more consistent pattern when starting to cross. CONCLUSIONS : In this study, we verified the effect of newly installed pedestrian countdown signals on improving pedestrian safety at two intersections in Yeongcheon and Yeongju, which were selected through a survey of traffic accident-prone areas in Gyeongsangbuk-do. Pedestrian countdown signals were quantitatively confirmed to have a positive impact on pedestrian safety. Based on the observations, it is anticipated that expanding the installation of these signals will have a positive effect on pedestrian safety, particularly in areas with frequent traffic accidents and the senior and children protection zones. Results of this study indicate that the proposed policy measures are expected to strengthen pedestrian safety and reduce traffic accidents.
        4,000원
        2.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental pollution has led to global warming, which threatens human life. In response, hydrogen is gaining attention as a next-generation energy source that does not emit carbon. Due to its explosive nature, special care must be taken in the safe storage and transportation of hydrogen. Among various storage methods, liquefied storage, which can reduce its volume to 1/800, is considered efficient. However, since its boiling point reaches -253°C, the design of an insulation system is essential. For the design of insulation systems applied to large containers, a membrane-type design is required, which necessitates the use of cryogenic adhesives. To evaluate whether the cryogenic adhesive is properly implemented, assessments such as tensile and shear tests are necessary. This study presents a methodology for shear evaluation. Conventional methods for shear evaluation of adhesives result in slippage, preventing proper assessment. Therefore, a method involving drilling holes in the gripper and pulling from the holes must be applied. Optimal design concerning the size and location of the holes is required, and this study derives optimal values based on finite element analysis. By conducting experiments based on the results of this study, it is expected that the risk of gripper damage will be minimized, allowing for accurate evaluation of the adhesive’s performance.
        4,000원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계적인 환경 규제로 인해 마그네슘 합금과 같은 경량 소재에 대한 수요가 증가하고 있으며, 마그네슘 합금 소재의 다양한 산업계 적용을 위한 용접 및 접합 방식에 대한 연구도 지속적으로 수행되고 있다. 앞선 Part I 연구에서는 마그네슘 합금에 대한 파이버 레이저 Bead on Plate(BOP) 실험을 수행하여 맞대기 용접 조건의 확보를 위한 기초 연구를 수행하였으며, 본 연구에서는 Part I의 기초 BOP 실험에서 도출된 적합한 레이저 출력과 용접 속도를 바탕으로 두께 3mm의 AZ31B 마그네슘 합금에 대해 맞대기 용접을 시행하였고, 인장시험 및 경도시험을 수행한 후 기계 물성 데이터를 분석하였다. 분석 결과 레이저 출력 2.0 kW, 50 mm/s (Heat input)의 조건에서 항복강도 151.5 MPa, 인장강도 224.1 Mpa으로 우수한 인장, 항복강도를 얻을 수 있었다.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
        4,000원
        6.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for LNG Carrier and LNG fuel ships are increasing due to global carbon neutrality declaration and ship emissions regulation of IMO, domestic shipyards pay technology fees(about 5~10% of ship price per vessel) to GTT company in France for making LNG cargo hold. Localization of LNG cargo hold is needed to reduce technology fees and engage technological competitiveness, it is important to secure the critical technology like automation process development of insulation system process. Especially, the automation rate of membrane-type insulation system is very low due to interference caused by corrugation and difficulty in securing optimal variable welding condition. In this study, to solve this problem, automatic welding is performed using developed automatic welding equipment on STS304L steel which is used in flat and corner area of membrane-type LNG cargo hold's lap joint. After welding, Cross-sectional observations and Tensile strength tests were conducted to evaluate reliability of equipment and welding condition. As a result of the test, it was confirmed that the strength of the welded zone exceeded that of base material, and secured the optimal welding condition to apply automatic welding.
        4,000원
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.
        4,000원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to respond to environmental pollution, developed countries, including Korea, have begun to conduct research to utilize hydrogen energy. For mass transfer of hydrogen energy, storage as liquid hydrogen is advantageous, and in this case, the volume can be reduced to 1/800. As such, the transportation technology of liquefied hydrogen for ships is expected to be needed in the near future, but there is no commercialized method yet. This study is a study on the technology to test the performance of the components constituting the membrane type storage container in a cryogenic environment as a preparation for the above. It is a study to find a way to respond by analyzing in advance the problems that may occur during the shear test of adhesives. Through this study, the limitations of ISO4587 were analyzed, and in order to cope with this, the specimen was supplemented so that fracture occurred in the adhesive, not the adhesive gripper, by using stainless steel, a low-temperature steel, to reinforce the thickness. Based on this, shear evaluation was performed under conditions lowered to minus 243℃, and it was confirmed that the breaking strength was higher at cryogenic temperatures.
        4,000원
        10.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Demand for research on the use of hydrogen, an eco-friendly fuel, is rapidly increasing in accordance with global environmental problems and IMO environmental regulations in the shipbuilding and marine industry. In the case of hydrogen, similar to liquefied natural gas, it has a characteristic that its volume decreases hundreds of times during phase transformation from gas to liquid, so it must be stored in a tank in the form of liquefied hydrogen for transport efficiency. The material of the liquid hydrogen tank is selected in consideration of mechanical properties and hydrogen embrittlement at cryogenic temperatures. In this study, welding research was conducted on STS316L material, which was most commonly used in the space industry. In this study, flux cored arc welding was performed under 4 welding conditions to derive the optimal welding conditions for STS316L material, and then mechanical properties of the welded part were compared and analyzed.
        4,000원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is a representative processing technology applied in many industrial sites due to its quality and convenience. In particular, fiber laser welding can be welded at a faster speed compared to arc welding, and there is an advantage in welding distortion, which is the most significant disadvantage of welding. In this study, the weldable thickness was predicted, and the optimal welding angle was estimated using simulations during the welding of the T-shape structure. The multi-layer heat source model proposed in the previous author's study was used, and the study was conducted using the proposed welding heat source under specific conditions of 4kw and 1.0m/min. As a result, it was predicted that high-quality welding would be possible when the thickness was 3mm or 4mm, and it was also confirmed that welding should be performed at an angle of 82.5° or more when welding a 3mm thick structure. As a follow-up study, we plan to build a welding heat source model under various conditions and conduct a study to derive welding conditions at various thicknesses.
        4,000원
        12.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A heat exchanger refers to a pressure vessel that indirectly exchanges heat between low-temperature/ high-temperature fluids with a solid wall interposed therebetween, and a shell-and-tube cylindrical heat exchanger is generally applied. The shell-and-tube cylindrical heat exchanger is widely used in ships and there is a problem in that the welding area is narrow and welding defects occur a lot due to high-level welding. In particular, in the case of a ship heat exchanger, if a problem occurs in the welding part during operation, the possibility of a safety accident is high, and repair is not easy. In this study, to solve this problem, the GTAW(Gas Tungsten Arc Welding) method was applied to secure the optimum conditions for pipe welding of STS304 material with a thickness of 5.5mm and to conduct a test. Afterwards, in accordance with the ASME rules, welding performance was verified through cross-sectional observation of welds, mechanical property tests, (tensile strength, bending strength, cryogenic impact strength) and non-destructive testing(PT, RT).
        4,000원
        13.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        9% nickel steel has remarkable mechanical properties in a cryogenic condition and is widely used in storage containers for LNG fueled ships. Demand for laser welding rather than conventional arc welding has grown to increase manufacturing efficiency. However there are various types of heat sources which are suggested by other researchers. With that, it is difficult to select a proper heat source shape for welding conditions. The author proposed a representative heat source model that can cover most of suggested heat source models through previous studies. Welding power was fixed at 4kW and the speed was changed to 1.0m/min, 1.5m/min, and 2.0m/min respectively. The shapes of the welding heat sources were derived, and the tendency of the main parameters was also deducted. It was observed that the width and depth of the weld bead decreased as the welding speed increased through welding experiment, parameters of welding heat source are changed linearly. Based on this study, it is expected that it will be possible to estimate the shape of the heat source under untested welding conditions.
        4,000원
        14.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the International Maritime Organization (IMO) are getting stricter, and the demand for replacing the fuel of ships with eco-friendly fuels instead of heavy oil in the shipbuilding and marine industries is increasing. Among eco-friendly fuels, LNG (liquefied natural gas) is currently the most popular fuel. This is because it is an alternative that can avoid the IMO's environmental regulations by replacing fuel. In PART 1, as a basic study of laser welding of high manganese steel materials, a fiber laser bead-on-plate experiment was conducted using nitrogen protective gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation. In PART II, argon and helium shielding gases, not the nitrogen shielding gas used in PART I, were tested under the same experimental conditions and the effect of the shielding gas on penetration during laser welding was conducted.
        4,000원
        15.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the IMO (International Maritime Organization) are becoming more and more conservative. In order to respond to IMO, the demand for replacing the fuel of ships with eco-friendly fuels instead of conventional heavy oil is increasing in the shipbuilding and offshore industries. Among eco-friendly fuels, LNG (Liquefied Natural Gas) is currently the most popular fuel. LNG is characteristically liquefied at -163 degrees, and at this time, its volume is reduced to 1/600, so it is transported in a cryogenic liquefied state for transport efficiency. A tank for storing this should have sufficient mechanical/thermal performance at cryogenic temperatures, and among them, high manganese steel is known as a material with high price competitiveness and satisfying these performance. However, high manganese steel has a limitation in that the mechanical performance of the filler metal is lower than that of the base metal called ‘under matching’. In this study, to overcome this limitation, a basic study was conducted to apply the fiber laser welding method without filler metal to high manganese steel. To obtain efficient welding conditions, in this study, bead-on-plate welding was performed by changing the fiber laser welding speed and output using helium shielding gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation.
        4,000원
        16.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the environmental regulations of the International Maritime Organization (IMO), the number of ships using cryogenic fuel such as LNG (liquefied natural gas) is increasing rapidly, and the demand for eco-friendly ships is expected to grow further in the future. The material of the tank for storing cryogenic fuel such as LNG is limited within the IGC Code, and available materials include 9% nickel steel, Invar (36% nickel steel), Al5083-0, STS304L, and high manganese steel. Recently, 9% nickel steel has been used as a tank in LNG fuel-powered ship projects, and it has excellent thermal/mechanical properties in cryogenic LNG environmental conditions (-163°C). In this study, it is conducted an experimental study on SAW(Submerged Arc welding), which has better welding efficiency than FCAW(Flux Cored Arc Welding), which is mainly used for 9% nickel steel materials. In addition, to verify the reliability of the welded part after the welding test, cross-sectional observation of the welded part was performed and the mechanical properties such as the tensile strength and cryogenic impact strength of the welded part were evaluated.
        4,000원
        17.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to elucidate the architectural characteristics of the cathedral architecture of the Archdiocese of Gwangju, which was completed in the period of liberation and turbulence, and the conclusions are as follows. Gwangju Archdiocese Cathedral, completed during the period of liberation and turbulence, was built with some assistance from the U.S. military or with the efforts of the faithful, and there are a number of factors such as space directing by Aps, the development of a simplified bell tower, the appearance of a stone cathedral, the application of a quenset structure, and an increase in size. show special features The indented apse appears only after liberation, and is a characteristic that appears prominently in stone churches. The simplified form in which the bell was hung by raising the outer wall appeared in the early church shows a change in the composition with a porch in front. The stone church and the quanset-structured church only appeared after liberation and were built only in the 1950s. The size of the cathedral reflects the increase in the number of believers after the Korean War, and the average area is about 1.5 times higher than before liberation. When considering the spacing of the bays as a module, the size plan followed the implicit norm of early cathedral architecture of 36.5m, but gradually decreased to 2.7m and 2.4m.
        4,000원
        18.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conversion to modern hydrogen energy is required, and research on liquefied hydrogen cargo containment systems is needed for large-capacity transport and storage. In this study, changes in the mechanical properties of the adhesive required for storage and transport in liquid hydrogen were confirmed. The lap shear test was performed by realizing cryogenic conditions in a small chamber using liquid nitrogen and liquid helium. There was an increase of 11.0% in the -180℃ condition compared to room temperature, and an increase of 1.8% in the -230℃ condition compared to the -180℃ condition was confirmed. In the case of shear strain, it is known that it decreases as the temperature goes down. As a result of the experiment, it was confirmed that the value at room temperature and the value at -180℃ reduced the shear strain by 5.0%, and -230˚ compared to the -180℃ condition. An increase of 1.5% was confirmed in the C condition. In the case of the specimen tested at -230℃, the deformation in the gripper part was larger than in other tests, and it is judged that the maximum shear strength and shear strain were affected. In addition, in this study, there is a limitation in the experiment at -230°C rather than 253°C, which is the boiling point of hydrogen
        4,000원
        19.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In modern times, where problems due to environmental pollution are continuously occurring, hydrogen is in the spotlight as the energy of the future. Hydrogen is an eco-friendly energy resource that does not even generate CO2, and is actively supporting research to utilize hydrogen energy at the national level. This study is a study on the cryogenic mechanical properties of the elements constituting the cargo hold during the transportation of liquid hydrogen. Among the various components, the evaluation of mechanical properties of the cryogenic adhesive under liquid helium conditions was confirmed. The related contents are summarized as follows. As a result of performing SSRT by curing the adhesive, it was confirmed that tensile strength and maximum strain were increased at cryogenic temperature (-230°C) compared to room temperature (25°C). It was confirmed that the adhesive-hardened specimen showed a brittle fracture mode at both room temperature and cryogenic temperature during tensile. Improvements in this study, such as pores occurring during adhesive curing, the use of standard specimens, and experiments at -253°C, the boiling point of hydrogen, exist, and are planned to be carried out in subsequent studies.
        4,000원
        20.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However, hydrogen technologies must deal with safety aspects due to the specific sub�stance properties. This study aims to provide an overview on the loss of mechanical properties of cryogenic materials, which may lead to serious consequences, such as fires and explosions. The hydrogen embrittlement of cryogenic steels was investigated through slow strain rate tensile tests (SSRTs) and thermal desorption analyses of electrochemically H-charged specimens. As a prior study to confirm mechanical properties under liquid hydrogen conditions, the amount of diffusive hydrogen that causes hydrogen embrittlement was confirmed after charging hydrogen using an electrochemical method for 4 types of steel materials applied as cryogenic materials did. When exposed to the same hydrogen charging conditions, the amount of hydrogen diffused into the 9% nickel steel is the highest compared to the austenitic steel type. It is considered that this is because the diffusion and integration of hydrogen into the interior is easy. It is necessary to analyze the relationship between hydrogen loading and mechanical properties, and this will be carried out in a follow-up study.
        4,000원
        1 2 3 4