세계적인 환경 규제로 인해 마그네슘 합금과 같은 경량 소재에 대한 수요가 증가하고 있으며, 마그네슘 합금 소재의 다양한 산업계 적용을 위한 용접 및 접합 방식에 대한 연구도 지속적으로 수행되고 있다. 앞선 Part I 연구에서는 마그네슘 합금에 대한 파이버 레이저 Bead on Plate(BOP) 실험을 수행하여 맞대기 용접 조건의 확보를 위한 기초 연구를 수행하였으며, 본 연구에서는 Part I의 기초 BOP 실험에서 도출된 적합한 레이저 출력과 용접 속도를 바탕으로 두께 3mm의 AZ31B 마그네슘 합금에 대해 맞대기 용접을 시행하였고, 인장시험 및 경도시험을 수행한 후 기계 물성 데이터를 분석하였다. 분석 결과 레이저 출력 2.0 kW, 50 mm/s (Heat input)의 조건에서 항복강도 151.5 MPa, 인장강도 224.1 Mpa으로 우수한 인장, 항복강도를 얻을 수 있었다.
Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
The demand for LNG Carrier and LNG fuel ships are increasing due to global carbon neutrality declaration and ship emissions regulation of IMO, domestic shipyards pay technology fees(about 5~10% of ship price per vessel) to GTT company in France for making LNG cargo hold. Localization of LNG cargo hold is needed to reduce technology fees and engage technological competitiveness, it is important to secure the critical technology like automation process development of insulation system process. Especially, the automation rate of membrane-type insulation system is very low due to interference caused by corrugation and difficulty in securing optimal variable welding condition. In this study, to solve this problem, automatic welding is performed using developed automatic welding equipment on STS304L steel which is used in flat and corner area of membrane-type LNG cargo hold's lap joint. After welding, Cross-sectional observations and Tensile strength tests were conducted to evaluate reliability of equipment and welding condition. As a result of the test, it was confirmed that the strength of the welded zone exceeded that of base material, and secured the optimal welding condition to apply automatic welding.
The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.
Demand for research on the use of hydrogen, an eco-friendly fuel, is rapidly increasing in accordance with global environmental problems and IMO environmental regulations in the shipbuilding and marine industry. In the case of hydrogen, similar to liquefied natural gas, it has a characteristic that its volume decreases hundreds of times during phase transformation from gas to liquid, so it must be stored in a tank in the form of liquefied hydrogen for transport efficiency. The material of the liquid hydrogen tank is selected in consideration of mechanical properties and hydrogen embrittlement at cryogenic temperatures. In this study, welding research was conducted on STS316L material, which was most commonly used in the space industry. In this study, flux cored arc welding was performed under 4 welding conditions to derive the optimal welding conditions for STS316L material, and then mechanical properties of the welded part were compared and analyzed.