검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquified hydrogen is considered a new energy resource to replace conventional fossil fuels due to environmental regulations by the IMO. When building tank for the storage and transportation of liquified hydrogen, materials need to withstand temperatures of -253°C, which is even lower than that of LNG (-163°C). Austenitic stainless steel mainly used to build liquified hydrogen tank. When building the tanks, both the base material and welding zone need to have excellent strength in cryogenic condition, however, manual arc welding has several issues due to prolonged exposure of the base material to high temperatures. Laser welding, which has some benefits like short period of exposure time and decrease of thermal affected zone, is used many industries. In this study, laser bead on plate welding was conducted to determine the laser butt welding conditions for STS 304 and STS 316L steels. After the BOP test, cross-section observations were conducted to measure and compare four bead parameters. These tendency result of laser BOP test can be used as conditions laser butt welding of STS 304 and STS 316L steel.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for LNG Carrier and LNG fuel ships are increasing due to global carbon neutrality declaration and ship emissions regulation of IMO, domestic shipyards pay technology fees(about 5~10% of ship price per vessel) to GTT company in France for making LNG cargo hold. Localization of LNG cargo hold is needed to reduce technology fees and engage technological competitiveness, it is important to secure the critical technology like automation process development of insulation system process. Especially, the automation rate of membrane-type insulation system is very low due to interference caused by corrugation and difficulty in securing optimal variable welding condition. In this study, to solve this problem, automatic welding is performed using developed automatic welding equipment on STS304L steel which is used in flat and corner area of membrane-type LNG cargo hold's lap joint. After welding, Cross-sectional observations and Tensile strength tests were conducted to evaluate reliability of equipment and welding condition. As a result of the test, it was confirmed that the strength of the welded zone exceeded that of base material, and secured the optimal welding condition to apply automatic welding.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The need for lightweight yet strong materials is being demanded in all industries. Carbon fiber-reinforced plastic is a material with increased strength by attaching carbon fiber to plastic, and is widely used in the aerospace industry, ships, automobiles, and civil engineering based on its low density. Carbon-reinforced fiber plastic is a material widely used in parts and manufactured products, and structural analysis simulation is required during design, and application of actual material properties is necessary for accurate structural analysis simulation. In the case of carbon-reinforced fiber plastics, it is reported that there is a porosity of around 0.5% to 6%, and it is necessary to check the change in material properties according to the porosity and pore shape. It was confirmed by applying the method. It was confirmed that the change in elastic modulus according to the porosity was 10.7% different from the base material when the porosity was 6.0%, and the Poisson's ratio was confirmed to be less than 3.0%. It was confirmed that the elliptical spherical pore derived different material properties from the spherical pore depending on the pore shape, and it was confirmed that the shape of the pore had to be confirmed to derive equivalent material properties.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to respond to environmental pollution, developed countries, including Korea, have begun to conduct research to utilize hydrogen energy. For mass transfer of hydrogen energy, storage as liquid hydrogen is advantageous, and in this case, the volume can be reduced to 1/800. As such, the transportation technology of liquefied hydrogen for ships is expected to be needed in the near future, but there is no commercialized method yet. This study is a study on the technology to test the performance of the components constituting the membrane type storage container in a cryogenic environment as a preparation for the above. It is a study to find a way to respond by analyzing in advance the problems that may occur during the shear test of adhesives. Through this study, the limitations of ISO4587 were analyzed, and in order to cope with this, the specimen was supplemented so that fracture occurred in the adhesive, not the adhesive gripper, by using stainless steel, a low-temperature steel, to reinforce the thickness. Based on this, shear evaluation was performed under conditions lowered to minus 243℃, and it was confirmed that the breaking strength was higher at cryogenic temperatures.
        4,000원
        7.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Demand for research on the use of hydrogen, an eco-friendly fuel, is rapidly increasing in accordance with global environmental problems and IMO environmental regulations in the shipbuilding and marine industry. In the case of hydrogen, similar to liquefied natural gas, it has a characteristic that its volume decreases hundreds of times during phase transformation from gas to liquid, so it must be stored in a tank in the form of liquefied hydrogen for transport efficiency. The material of the liquid hydrogen tank is selected in consideration of mechanical properties and hydrogen embrittlement at cryogenic temperatures. In this study, welding research was conducted on STS316L material, which was most commonly used in the space industry. In this study, flux cored arc welding was performed under 4 welding conditions to derive the optimal welding conditions for STS316L material, and then mechanical properties of the welded part were compared and analyzed.
        4,000원
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is a representative processing technology applied in many industrial sites due to its quality and convenience. In particular, fiber laser welding can be welded at a faster speed compared to arc welding, and there is an advantage in welding distortion, which is the most significant disadvantage of welding. In this study, the weldable thickness was predicted, and the optimal welding angle was estimated using simulations during the welding of the T-shape structure. The multi-layer heat source model proposed in the previous author's study was used, and the study was conducted using the proposed welding heat source under specific conditions of 4kw and 1.0m/min. As a result, it was predicted that high-quality welding would be possible when the thickness was 3mm or 4mm, and it was also confirmed that welding should be performed at an angle of 82.5° or more when welding a 3mm thick structure. As a follow-up study, we plan to build a welding heat source model under various conditions and conduct a study to derive welding conditions at various thicknesses.
        4,000원
        9.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is one of representative manufacturing processes in the industrial field. Cryogenic storage containers are also manufactured through welding, and conversion to laser welding is issue in the field due to many advantages. Since welding causes thermal-elastic deformation, design considering distortion is required. Prediction of distortion through FEM is essential, but laser welding has difficulties in the field because there is no representative heat source model. The author presented the model that can cover various models using a multi-layer heat source model in previous studies. However the previous study has a limitation which is a welding heat source model must be derived after performing bead on plate welding. Thus this study was attempted to estimate the welding heat source parameters by comparing the shape of bead under various conditions. First, the difference between penetration shape and welding heat source parameters according to welding power was analyzed. The radius of the welding heat source increased according to the welding power, and the depth of the welding heat source also increased. The correlation between the penetration shape and the welding heat source parameter appears at a similar rate, however the follow-up research is necessary with more model data.
        4,000원
        10.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to environmental pollution, regulations on fossil fuels are required. There is a movement for the regulations by using LNG fueled propulsion ships. LNG is an eco-friendly fuel that does not emit NOx or SOx during combustion, but its boiling point is -163°C. Under that condition, the use of metal is restricted, and IMO defined applicable materials through IGC code. Among the metals, 9% nickel steel is one of excellent mechanical properties such as yield strength and tensile strength in cryogenic condition. Thus 9% nickel steel is widely used in cryogenic storage containers for ships. In addition, laser welding, which minimizes thermoelastic distortion by applying a concentrated heat source to a narrow area for a short period of time, is in the spotlight. So, this study is a basic research to predict and respond to thermal distortion during laser welding. Secondary version of the representative heat source model was derived through the author's previous research with STS304L, and the heat source model was derived by applying the heat source model to 9% nickel steel in this study. 9% nickel steel is a material that is in high demand and is widely used in the manufacture of cryogenic containers, so this study is expected to be able to respond immediately to the field.
        4,000원
        11.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        9% nickel steel has remarkable mechanical properties in a cryogenic condition and is widely used in storage containers for LNG fueled ships. Demand for laser welding rather than conventional arc welding has grown to increase manufacturing efficiency. However there are various types of heat sources which are suggested by other researchers. With that, it is difficult to select a proper heat source shape for welding conditions. The author proposed a representative heat source model that can cover most of suggested heat source models through previous studies. Welding power was fixed at 4kW and the speed was changed to 1.0m/min, 1.5m/min, and 2.0m/min respectively. The shapes of the welding heat sources were derived, and the tendency of the main parameters was also deducted. It was observed that the width and depth of the weld bead decreased as the welding speed increased through welding experiment, parameters of welding heat source are changed linearly. Based on this study, it is expected that it will be possible to estimate the shape of the heat source under untested welding conditions.
        4,000원
        12.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Laser welding is used in various industries due to fast welding speed, and prediction with FEM is needed to design. The multi-layered heat source model that can cover various models has been recently proposed to analyze laser welding, but it takes a lot of time because more than 2,000 cases are compared to derive the results. In order to reduce the time, the simplified model should be suggested. In order to derive a simplified model, laser welding heat transfer analysis was performed using the welding direction length and the convection coefficient of the welding direction surface as parameters. As a result, the model whose difference is less than 0.1% compared to reference model is deducted. The analysis time was reduced by about 90% from 48 hours to 5 hours. Also difference of convection coefficient on the welding direction surface does not affect the temperature distribution much.
        4,000원
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As laser welding has low thermal distortion and fast welding speed, the needs in the field is increasing in varous industries. Prediction of distortion and design with that prediction are very important for using welding process in the field. However many types of heat source models for laser welding are suggested, field engineers feels difffucult for using a proper model for a specific case. Thus I, author, suggested a representative model which can cover most of existing models with multi-layered heat source model. This method is very powerful, but there are much time consumption with analysis and comparision among more than 1,000 candidates. To solve these shortcomings, this study focused on to find the simplified model. In order to construct the simplified model, the length of the orthogonal direction to the welding direction was reduced from 300mm to 35mm, which makes time reduction of 75% with sustaining the quality of the original model. That can cover the disadvantage of multi-layered heat source model for laser welding, enhance the prediction of welding distortion after laser welding
        4,000원
        14.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the environmental regulations of the International Maritime Organization (IMO), the number of ships using cryogenic fuel such as LNG (liquefied natural gas) is increasing rapidly, and the demand for eco-friendly ships is expected to grow further in the future. The material of the tank for storing cryogenic fuel such as LNG is limited within the IGC Code, and available materials include 9% nickel steel, Invar (36% nickel steel), Al5083-0, STS304L, and high manganese steel. Recently, 9% nickel steel has been used as a tank in LNG fuel-powered ship projects, and it has excellent thermal/mechanical properties in cryogenic LNG environmental conditions (-163°C). In this study, it is conducted an experimental study on SAW(Submerged Arc welding), which has better welding efficiency than FCAW(Flux Cored Arc Welding), which is mainly used for 9% nickel steel materials. In addition, to verify the reliability of the welded part after the welding test, cross-sectional observation of the welded part was performed and the mechanical properties such as the tensile strength and cryogenic impact strength of the welded part were evaluated.
        4,000원
        15.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conversion to modern hydrogen energy is required, and research on liquefied hydrogen cargo containment systems is needed for large-capacity transport and storage. In this study, changes in the mechanical properties of the adhesive required for storage and transport in liquid hydrogen were confirmed. The lap shear test was performed by realizing cryogenic conditions in a small chamber using liquid nitrogen and liquid helium. There was an increase of 11.0% in the -180℃ condition compared to room temperature, and an increase of 1.8% in the -230℃ condition compared to the -180℃ condition was confirmed. In the case of shear strain, it is known that it decreases as the temperature goes down. As a result of the experiment, it was confirmed that the value at room temperature and the value at -180℃ reduced the shear strain by 5.0%, and -230˚ compared to the -180℃ condition. An increase of 1.5% was confirmed in the C condition. In the case of the specimen tested at -230℃, the deformation in the gripper part was larger than in other tests, and it is judged that the maximum shear strength and shear strain were affected. In addition, in this study, there is a limitation in the experiment at -230°C rather than 253°C, which is the boiling point of hydrogen
        4,000원
        16.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In modern times, where problems due to environmental pollution are continuously occurring, hydrogen is in the spotlight as the energy of the future. Hydrogen is an eco-friendly energy resource that does not even generate CO2, and is actively supporting research to utilize hydrogen energy at the national level. This study is a study on the cryogenic mechanical properties of the elements constituting the cargo hold during the transportation of liquid hydrogen. Among the various components, the evaluation of mechanical properties of the cryogenic adhesive under liquid helium conditions was confirmed. The related contents are summarized as follows. As a result of performing SSRT by curing the adhesive, it was confirmed that tensile strength and maximum strain were increased at cryogenic temperature (-230°C) compared to room temperature (25°C). It was confirmed that the adhesive-hardened specimen showed a brittle fracture mode at both room temperature and cryogenic temperature during tensile. Improvements in this study, such as pores occurring during adhesive curing, the use of standard specimens, and experiments at -253°C, the boiling point of hydrogen, exist, and are planned to be carried out in subsequent studies.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However, hydrogen technologies must deal with safety aspects due to the specific sub�stance properties. This study aims to provide an overview on the loss of mechanical properties of cryogenic materials, which may lead to serious consequences, such as fires and explosions. The hydrogen embrittlement of cryogenic steels was investigated through slow strain rate tensile tests (SSRTs) and thermal desorption analyses of electrochemically H-charged specimens. As a prior study to confirm mechanical properties under liquid hydrogen conditions, the amount of diffusive hydrogen that causes hydrogen embrittlement was confirmed after charging hydrogen using an electrochemical method for 4 types of steel materials applied as cryogenic materials did. When exposed to the same hydrogen charging conditions, the amount of hydrogen diffused into the 9% nickel steel is the highest compared to the austenitic steel type. It is considered that this is because the diffusion and integration of hydrogen into the interior is easy. It is necessary to analyze the relationship between hydrogen loading and mechanical properties, and this will be carried out in a follow-up study.
        4,000원
        18.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to environmental pollution, regulations on existing petroleum-based fuels are increasing day by day. LNG is in the spotlight as an eco-friendly fuel that does not emit NOx or SOx, but its boiling point is -163°C, so it needs to be handled with care. Materials that can be used at the above temperature are defined by IMO through the IGC Code. Among them, 9% nickel steel has great advantages in yield strength and tensile strength under cryogenic conditions, but it is difficult to use in arc welding such as FCAW for various reasons. This study is a study to apply fiber laser welding to solve this problem. As a previous study, this study conducted a study to find a welding heat source. After performing bead on plate welding, the optimal heat source was derived by analyzing the shape of the bead and adjusting the parameters of the heat source model. In this case, by applying the multi-island genetic algorithm, which is a global optimization algorithm, not the intuition of the researcher, accurate results could be derived in a wide range.
        4,000원
        19.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization(IMO), the number of ships fueled by Liquefied Natural Gas(LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In this study, a study on penetration (HAZ depth, Penetration) and welding defects during fiber laser welding according to three types of shielding gases(nitrogen, argon, and helium) was conducted. To this end, a Bead on plate(BOP) experiment was performed under four fiber laser conditions(Power, Speed) for each shielding gas and welding defects caused by the use of the shielding gas were compared through cross-sectional observation, and the penetration depth was analyzed.
        4,000원
        20.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layered heat source model is a model that can cover most of existing studies and can be defined with a simple formula. Based on the methodology performed in previous studies, the welding heat source was found through experiments and FEM under the welding power conditions of three cases and the parameters of the welding heat source were analyzed according to the welding power. In this study, parameters of fiber laser welding heat source according to welding power were searched through optimization algorithm and finite element analysis, and the correlation was analyzed. It was confirmed that the concentration of the welding heat source in the 1st layer was high regardless of the welding power, and it was confirmed that the concentration of the welding heat source in the 5th layer (last layer) increased as the welding power increased. This reflects the shape of the weld bead that appears during actual fiber laser welding, and it was confirmed that this study represents the actual phenomenon.
        4,000원
        1 2