This paper proposes predictive deadbeat current control, one of the model predictive controls. The predictive deadbeat control is compared to the conventional current control methods to validate its feasibility in X-by-Wire systems.
The design of the corner joints in furniture structures is very important to firmly support the loaded structure and to sufficiently maintain the durability and stability. Therefore, the strength of the corner joints and the rigidity of the connected panels play a very important role in the structural performance of the assembled furniture. The structural properties can be measured or calculated experimentally or numerically, and compared by representing the applyed forces or bending moments as a function of deformed value. This paper shows the numerical models to determine the strength and stiffness of the 3-types of corner joints for simple designed furniture. Based on the finite element results, the maximum stresses are concentrated on the corner joints designed with MDF panels. And the deformation resistances and maximum applied loads are calculated for furniture corner joints under tensile and compressive moment.
The Calorifier is a device that supplies hot water to the crew for showering and cooking. In particular, problems such as hot water not coming out when a trainee and a crew member take a shower at the same time may occur due to a malfunction of the temperature control valve that controls the temperature. In particular, when the hot water usage time is almost constant, such as a training ship, a high calorific value is required. When there is no dissatisfaction with the use of hot water, satisfaction with the educational environment is improved. Therefore, in this study, a solenoid temperature control valve is applied to increase satisfaction with hot water use, and a mechanical time switch is applied to the hot water circulating water pump to save energy.
In this study, a mixed resin containing Bis-GMA was developed to produce a light-emitting sign using quantum dots. As a result of measuring the viscosity, color coordinates change, and luminance of the mixed resin, the following conclusions were obtained. The viscosity of the mixed resin decreased as the content of the diluent increased, and viscosity values ranged from 3,627 to 1,349cps showed as a result. The viscosity of the mixed resin decreased as the temperature increased, and the viscosity showed a value of 5,156 to 1,132cps. For the optical properties of InP/GaP/ZnSe/ZnS quantum dots, the absolute quantum efficiency was 91% at 522nm and 90% at 618nm when the gallium was 0.01%. The luminance of the light-emitting sign using the resin mixed with quantum dots was showed 142.6cd/m2 in white and 104.2cd/m2 in the red region.
In this study, a mixed resin containing Bis-GMA was developed to produce a light-emitting sign using quantum dots. As a result of measuring the viscosity, color coordinates change, and luminance of the mixed resin, the following conclusions were obtained. The viscosity of the mixed resin decreased as the content of the diluent increased, and viscosity values ranged from 3,627 to 1,349cps showed as a result. The viscosity of the mixed resin decreased as the temperature increased, and the viscosity showed a value of 5,156 to 1,132cps. For the optical properties of InP/GaP/ZnSe/ZnS quantum dots, the absolute quantum efficiency was 91% at 522nm and 90% at 618nm when the gallium was 0.01%. The luminance of the light-emitting sign using the resin mixed with quantum dots was showed 142.6cd/m2 in white and 104.2cd/m2 in the red region.
This study is to investigate the effect of material for GPF on the PM reduction characteristics before the improvement of filter efficiency in GPF. The material of GPF was changed to ceramic and metal. The ceramic material was applied to SiC, and the metal materials were employed to STS 310s, STS 316s, and STS 410s. The number of honeycomb and wall thickness were set to 200CPSI, 0.3987mm, respectively. The inlet mass flow was fixed at 0.00695kg/s. The inlet air temperature was changed from 500K(0s∼350s) to 1000K(400s∼900s). It was found that the differences in loading amount according to the GPF materials were difficult to observe because the pore density and porosity were set to be the same to affect only the mechanical properties. STS 310s with the highest temperature value had the fastest regeneration time. However, as time goes on, SiC had the highest regeneration rate characteristics. The reason is that the high-temperature region in the GPF by the high-temperature exhaust gas was rapidly transferred toward the outlet due to the high thermal conductivity of SiC.
Double slug interaction in downward-facing nucleate boiling was studied to investigate its effect on boiling performance. Two heating surfaces were individually controlled to apply heat flux while their boiling performance were measured. A slug generated from upper heater affect on lower heater to make convectional flow by suction following departure of slug. Moreover, it showed to reduce hovering time of slug bubble on lower heater because it could help bubble departure on lower heater. Meanwhile, a slug generated from lower heater affected on upper heater to make convectional flow by sweeping. However, it showed to increase hovering time of slug bubble on upper heater, because they collapsed to each other. So, the slugs from lower heater enhanced the boiling performance of upper heater with low heat flux condition, but reduced the performance of it with high heat flux condition.
In 2000s, three-dimensional shapes of gluon particles in a proton were discovered. It has been demonstrated that asymmetrical gravitational forces exist between these particles. The asymmetric gravitational force between gluon particles in a proton causes that proton to accelerate on its own and this is the basis of the gas mo;ecular motions. In this work, a simplified acceleration model which simulated the asymmetric gravitational force in a proton was proposed. Here we report the comparative study between density distribution of gravitational forces obtained from the proposed model and Max well-Boltzmann velocity distribution that are in good agreement with expressing the behavior of gas molecules respectively.
In this study, a study was conducted to improve the reliability of the valve by developing a valve leakage and reliability measurement system designed to secure the high quality and reliability of the butterfly valve. The system measuring the torque required for valve opening and closing operation, and was configured to operate after multiple opening and closing of the valve to check for leakage of the valve. Finally, a system that can perform efficient work in terms of productivity was developed by enabling leak inspection, torque measurement, and reliability inspection through one integrated system.
Experimental analysis has been carried out on double glazed glass of a commercial vehicle to analyze thermal characteristics for various air flow conditions. This double glazed glass has an important effect on the blocking performance of heat transfer with the vehicle's moving speed and ambient thermodynamic conditions. Calculated thermal resistances and heat transmission coefficient through the glass were compared with measured air indoor and outdoor temperatures including the glass surfaces using an experimental apparatus. The thermal resistance through the glass was increased with the indoor air temperature while overall heat transmission coefficient was decreased due to the convective heat transfer effect. As indoor air became warmer, the effect of air flow velocity on the heat transmission coefficient was reduced significantly. It is expected that these results can be used as applicable design data for the development of the double glazed glass system for many commercial vehicles.
In this paper, a method of reducing the weight of vehicle wheels through topology optimization by finite element method is proposed. Recently, various environmental pollution caused by the operation of vehicles is gradually increasing, and this has a great correlation with the fuel efficiency of the vehicle. Therefore, it is required to reduce the weight of the vehicle to increase fuel efficiency. Among them, the vehicle's wheels are a key part of vehicle acceleration and braking, and passenger safety. Because the shape of the wheels is different, various effects such as reduced fuel economy and reduced airpower occur as well as aesthetic factors. The stiffness of the wheels plays an important role in transmitting the vehicle's power to the tires and braking. In this study, to reduce weight while satisfying the stiffness value, we propose to use topology optimization to design an arbitrary shape according to the number of spokes on the wheel.
The objectives of this paper are to evaluate the factors affecting the fatigue crack propagation(FCP) behavior in AZ31 magnesium alloy. FCP experiments have been performed on the specimens of AZ31 magnesium alloy under various conditions such as a loading frequency, a specimen thickness, a maximum fatigue load, and a load ratio and the obtained results were analyzed to find the influence factors on the FCP behavior in magnesium alloy. It is necessary to consider the influence factors for the design and the maintenance of lightweight structures. The correlation between the crack growth rate exponent and the crack growth rate coefficient, which are FCP behavior parameters, was also analyzed and the regression model was presented.
Conversion to modern hydrogen energy is required, and research on liquefied hydrogen cargo containment systems is needed for large-capacity transport and storage. In this study, changes in the mechanical properties of the adhesive required for storage and transport in liquid hydrogen were confirmed. The lap shear test was performed by realizing cryogenic conditions in a small chamber using liquid nitrogen and liquid helium. There was an increase of 11.0% in the -180℃ condition compared to room temperature, and an increase of 1.8% in the -230℃ condition compared to the -180℃ condition was confirmed. In the case of shear strain, it is known that it decreases as the temperature goes down. As a result of the experiment, it was confirmed that the value at room temperature and the value at -180℃ reduced the shear strain by 5.0%, and -230˚ compared to the -180℃ condition. An increase of 1.5% was confirmed in the C condition. In the case of the specimen tested at -230℃, the deformation in the gripper part was larger than in other tests, and it is judged that the maximum shear strength and shear strain were affected. In addition, in this study, there is a limitation in the experiment at -230°C rather than 253°C, which is the boiling point of hydrogen
The steel structure of the Molten steel carrier is eroded due to environmental conditions such as high temperature and corrosion, and corrosion and erosion reduce the thickness of the structure and cause erosion around gas outlets. Since this increases the stress of the structure, it is necessary to study the safety of the structure. In this study, fatigue properties were estimated using the expert system that can estimate fatigue properties based on mechanical properties such as tensile strength or hardness, and the fatigue strength of the structure was evaluated using the estimated fatigue properties. As a result, the evaluated fatigue life was greater than 106 cycles, indicating that it has sufficient fatigue strength.
This paper presents the torque ripple reduction control to apply an SRM to the X-by-wire drive systems which replaces the mechanical control method with “by-wire” to secure the flexibility of design and modification. However, torque ripples generated from the SRM can affect the performance and stability of the system. The proposed torque ripple control schemes are compared with the previously studied methods by dynamic simulation in regards to torque distribution functions and instant torque controller.
ADAS(Advanced Driver Assistance System) for automobiles is being developed based on evaluation protocols. Radars, LiDars, and cameras are also being developed by many auto parts suppliers including automobile manufacturer, for automobile safety, but protocols following weather condition are still weak. In South Korea, typhoons that occur in summer in four seasons are the most damaging to property. Therefore, the research is needed based on the virtual environmental conditions of typhoons such as precipitation, wind speed, and temperature. In this study, it was derived that the average error rate for each typhoons condition such as SNR (Signal to Noise Ratio) and RCS (Radar Cross Section) is different by analyzing the effect of typhoons occurring in South Korea on radar according to virtual environmental conditions. It is expected that radar’s analysis from typhoon conditions data can be used to develop radar sensors.
Demand for CFRP with new characteristics is increasing in various industrial fields, from parts materials to daily necessities, and research on this is also being actively conducted. CFRP is a material that realizes properties suitable for multiple functions that cannot be seen in a single material by physically combining two or more materials with different shapes and chemical compositions. When machining CFRP using a high-speed steel (HSS) drill or a TiAlN-coating drill with different rotation speed and feed speed, the cutting force was experimentally analyzed and the optimal tool material and cutting conditions were selected. The cutting force according to the change in rotation speed of the high-speed steel drill and the TiAlN-coating drill is compared.
In this study, the power consumption and illuminance were analyzed by replacing the fluorescent and incandescent lamps used as light sources for the engine room lighting of the training ship with LED light sources. By replacing 40W and 20W fluorescent lamps with 17W and 11W LED lamps, 40W fluorescent lamps reduced power consumption by 57.5% and 20W fluorescent lamps reduced power consumption by 45% and improved illumination by 56.8%. In particular, as a result of replacing 60W incandescent lamps with LEDs, power consumption was reduced by 85%. By installing an auxiliary cooling seawater pump that supplies cooling seawater to the engine control room air conditioner and boiler drain cooler in parallel, there is an energy saving effect of 88.1%. was confirmed.
This paper analyzed the correlation between injection molding factors through correlation analysis. In addition, the decision-tree model, which is a white box model with excellent explanatory power, was used to obtain optimal molding conditions that satisfy multiple constraint conditions. First, 243 data to be used in the experiment were created through a full factorial design. Second, a correlation analysis was conducted to understand the correlation. Third, to verify the decision-tree model, the prediction performance was evaluated using RMSE. As a result, good prediction performance was confirmed. A decision-tree experiment analysis was conducted. As a result of the progress, the same results as the correlation analysis were derived. Based on the previous analysis results, optimal molding conditions were applied to CAE. As a result, the amount of deformation in the multi-cavity could be improved by about 1.1% and 2.72% while satisfying the constraint.
In this study, the frequency response analysis of a bistable electromagnetic vibration energy harvester is performed, based on an electromagnetic oscillator model, to investigate its nonlinear dynamic behaviors. The displacement and current responses are obtained, by the direct integration of the model, with the variations of mechanical and electromagnetic parameters. It is shown that the operating frequency band of the system can be broadened by the increase in mechanical parameters(inertial mass and Q-factor), but it does not depend significantly on any electromagnetic parameters(an external load resistance and the internal resistance of a coil). On the other hand, the output current of the energy harvester is affected only by the electromagnetic parameters (specifically, the sum of two resistances). Thus, the mechanical and electromagnetic parameters of the electromagnetic energy harvester must be designed properly, respectively, for broader and more efficient performance.