검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prepreg is an abbreviation of Preimpregnated Materials. It is a sheet-type product in which a matrix is ​​impregnated with reinforced fiber. The prepreg has very different properties depending on the orientation of the fibers and the weaving method, and the orientation of the fibers plays an important role in determining the mechanical strength of CFRP. Short and randomly oriented reinforcing fibers show isotropy, while long, unidirectional reinforcing fibers exhibit anisotropic behavior and are strongest when the applied load is parallel to the reinforcing fibers. Classification by the direction of the fiber is divided into unidirectional, orthogonal, multiaxial, and the like. Uni-directional refers to a state in which almost all fibers in the fabric are aligned in one direction. When the fibers used as reinforcing materials are aligned in one direction, the fibers are used in a straight line without twisting during the fabric production process, and there is an advantage in that the amount of fibers used as a whole can be minimized. A uni-directional prepreg exhibits different cutting forces depending on the stacking orientation angle. In this experiment, the optimal cutting conditions for a uni-directional prepreg 45 degree orientation angle specimen are presented.
        4,000원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of the most important problems in the cutting process of CFRP is tool wear. During CFRP machining, high temperature caused by friction between the cutting tool and the carbon fiber structure increase tool edge wear. Since CFRP is manufactured in a form in which the fibrous tissue is combined with a bonding resin, delamination caused by the separation of the resin and carbon fiber during process is recognized as a very big problem. This delamination proceeds very rapidly as the wear of the drill edge increases. Therefore, in this experiment, tool wear was measured during drilling using a TiAlN-coating drill with excellent wear resistance. In this study, tool wear is measured to suggest optimized cutting conditions for each material.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Demand for CFRP with new characteristics is increasing in various industrial fields, from parts materials to daily necessities, and research on this is also being actively conducted. CFRP is a material that realizes properties suitable for multiple functions that cannot be seen in a single material by physically combining two or more materials with different shapes and chemical compositions. When machining CFRP using a high-speed steel (HSS) drill or a TiAlN-coating drill with different rotation speed and feed speed, the cutting force was experimentally analyzed and the optimal tool material and cutting conditions were selected. The cutting force according to the change in rotation speed of the high-speed steel drill and the TiAlN-coating drill is compared.
        4,000원
        4.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CFRP composite has a lot of merits such as mechanical characteristic, light and thermal resistance. For these merits, CFRP is applied to so many industrial area. In order to use the composite materials in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise ,machining. In this study, the specimens differentiating the stacking sequence of 5kinds were used. When drilling the carbon fiber reinforced plastics, it was checked on whether the stacking sequence reached any effect on the cutting force. Also relationship between the drill diameter is examined from the drilling experiment, which is the drilling of Fabric, Unidirectional specimen with ∅6mm, ∅10mm, ∅12mm cemented carbide drill. Considering cutting force and drilling diameter, the results are analyzed.
        4,000원
        5.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The swivel joint is an important part in hydraulic machine. The analysis on the material was made using the EDAX method to localize the swivel joint. Also, the modeling and design drawing were finalized with application of 3 dimensional measurement and structure analysis. The prototype product based on design drawing was made with cutting and grinding process. No abnormalities were found in the prototype product through the durability test and measurement. The localized swivel joint with light weight, price reduction and diversification was developed in this study.
        4,000원