간행물

한국기계기술학회지 KCI 등재 Journal of the Korean Society of Mechanical Technology 韓國機械技術學會誌

권호리스트/논문검색
이 간행물 논문 검색

권호

제22권 제1호 (2020년 2월) 29

학술연구

1.
2020.02 구독 인증기관 무료, 개인회원 유료
Recently, as the quality of life of modern people improves, interest in environmental noise is gradually increasing. As the public's awareness of environmental rights increased, it was necessary to grasp the actual condition of the noise source and systematic noise management plan. The data is expected to be used as a response to noise-related complaints. As a result measured using the factory noise monitoring system, the amount of data measured every 5 minutes from 00:00 to 24:00 can obtain 288 noise levels and frequency characteristics per day, and frequency using 1/3 octave-band. The analysis reveals what frequency range affects the noise from the metal working plant near the office. In addition, it can be seen that it is possible to compare with the reference value by using the stored data divided into night time, day time, and evening time for each time zone, and it is determined that it is possible to secure smooth data about the noise source to be measured.
4,000원
2.
2020.02 구독 인증기관 무료, 개인회원 유료
A gasketed plate heat exchanger(GPHE) requires a much smaller installation space than a shell & tube heat exchanger because of its compact and good thermal performances. However, GPHEs have a disadvantage of being relatively vulnerable to high temperature and pressure due to rubber gaskets. To overcome a GPHEs’ disadvantage, Welded Block type Plate Heat Exchangers(WBPHE) have been developed. The flow pattern and heat transfer principle of WBPHE are very similar to GPHEs, so they are very compact and can be applied to high temperature and pressure. In this study, the structure and characteristics of WBPHE are briefly introduced, and its thermal performances were conducted experimentally using hot and cold water in the Reynolds number’s range from 5,500 to 10,000. Test results were compared with the experimental correlations of other researchers, which shows that significant deviations were noticed in the heat transfer coefficient predictions with a deviation range from 31% to 85%. The previous friction factor correlations also predicted the current results with big errors from 25% to 45%. These deviations are expected to be due to different chevron angles between previous studies and the current study, and also the end-plate effect is expected to be one of the potential causes that led to these deviations.
4,000원
3.
2020.02 구독 인증기관 무료, 개인회원 유료
The flow analysis of two dimensional transient flow over the obstacles with rectangular cross sections was performed. And 190 velocity distributions for each aspect ratio were imaged to provide input data for convolutional neural network learning. The classification and regression methods were used in estimating the aspect ratio from given velocity distributions. As a result the classification method was more exact than the regression method. But both the classification and regression methods gave relatively accurate prediction of the defined aspect ratio judging from the imaged velocity distributions. This confirms that the deep learning technique is applicable to the flow analysis.
4,000원
4.
2020.02 구독 인증기관 무료, 개인회원 유료
Generally, vibration absorber systems are composed of spring-mass systems to reduce the vibration of a structure, and there are also methods to simply increase damping to achieve a damping effect across a wide frequency band. One similar method is to use a mechanism in which the eddy current is converted into a mechanical damping effect. When an eddy current is generated by electromotive force due to magnetic flux change, the reaction force is generated by the eddy current’s circulation. In this study, the damping system using the reaction force was constructed to reduce the transmission of vibrations generating from internal fluid and the vibration reduction characteristics that are transmitted externally were analyzed. As a result, 8.2 % of the vibration reduction effect from primary excitation frequency was confirmed.
4,000원
5.
2020.02 구독 인증기관 무료, 개인회원 유료
Since electric energy is used in industry, mass production and various conveniences are provided. To provide convenience for the construction and operation of such electric energy transmission and distribution facilities, it is increasing that the demand for special purpose vehicles, that is, telescopic aerial work platform vehicles. When working active electric work using the telescopic aerial work platform vehicles, due to active electric work is inevitable, it is essential to ensure insulation performance for the safety of the operator. In this paper, we study the design and development of mechanical properties for filament winding process of glassfiber/epoxy composite, it is required to boom of telescopic aerial work platform vehicles. The glass fiber/epoxy composite filament winding process and its mechanical properties were evaluated to replace the existing ATOS80 boom. By filament winding process it was obtained the mechanical properties required for the design analysis of the glass fiber/epoxy composite boom. Using this, the insulated boom for the 30m class aerial work vehicle was designed and was manufactured by applying the filament winding process. The fabricated composite boom was evaluated by the static strength test to meet the required strength. The maximum displacement was 84mm and the crack occurred at the maximum load of 8981N. It satisfied the maximum lifting load of 4900N and 210mm the maximum displacement required for the boom.
4,000원
6.
2020.02 구독 인증기관 무료, 개인회원 유료
In this study, a bistable energy harvester (BEH) with a piecewise potential function is proposed to improve its energy harvesting performance. A mathematical model of the piecewise BEH (PWBEH) system is established first and a series of numerical simulation are performed, based on the developed model, in order to investigate the nonlinear dynamic behaviors and energy-harvesting performance of the system. The analysis results for the proposed PWBEH system are compared with a conventional BEH (CBEH). The frequency response results show the stiffness-softening interwell motion of the PWBEH, due to the piecewise potential energy function, which is contrary to the stiffness-hardening behavior of the CBEH. Such softening behavior of interwell motion tends to reduce the operating frequency of the BEH, while significantly increasing the output power. This observation indicate that the introduction of the piecewise potential function to a BEH would be beneficial to the system design for enhancing enegy-harvesting performance at the cost of redundant frequency band, which depends on the characteristics of environmental vibration sources.
4,000원
7.
2020.02 구독 인증기관 무료, 개인회원 유료
Experiments were conducted on the operating characteristics and performance of various types of working fluid, filling amount and heat flow rate of a loop thermosyphon for cooling ESS battery container. As results of performance test on various working fluids, HFE-7100 and R-134a as a working fluids showed unstable operating and low performance due to vapor pressure drop, and performance was improved by increasing the number of vapor lines for reducing a pressure drop. In this study, n-pentane was more stable and showed better thermal performance among various working fluids.
4,000원
8.
2020.02 구독 인증기관 무료, 개인회원 유료
Numerical analysis has been carried out to analyze seawater flow field and power generation characteristics of the tidal current power generation system for various multi channel shroud systems. Geometrical multi channel arrangement largely affects the flow field characteristics in the shroud system which power generation performance through turbine blade depends on. Sectional averaged velocity in front of the turbine blade which increases more than 2 times compared with channel inlet is much influenced as well as the flow from the rear with curl. And flow variation results in high inlet velocity in horizontal arrangements of multi channels with mechanical output of the turbine. These results are expected to be used as applicable data for the development of the tidal power generation system with shrouds.
4,000원
9.
2020.02 구독 인증기관 무료, 개인회원 유료
In the car speaker, because the sound characteristics is changed by the space of car which mount the speaker, the speaker elements must be decide according to sound field. In this study, the nonlinear characteristics, the frequency response and the sound pressure for the same size speakers which is adapted to domestic car model are investigated. The car model is classified to semi-midsize, midsized, full size automobile in order to change the car space. As a results, we can investigate the differences of the force factor and the stiffness of suspension system for speaker. According to the change of the speaker characteristics, the sound pressure is changed, also. In the future, these data will be used to investigate the correlation between the sound quality and measurement data.
4,000원
10.
2020.02 구독 인증기관 무료, 개인회원 유료
The purpose of this study is to experimentally figure out thermal performances of a newly developed wavy patterned heat plates(first heat plates) which are known to have better thermal performances than the conventional heat plates. Three types of products were made with high and low chevron angled plates. The test results show that overall heat transfer coefficients and pressure drops increased with flow rates and chevron angles just like other studies. Another purpose of this study is to find a way to reduce pressure drops while maintaining or even improving the heat transfer characteristics of the first heat plates. Research on optimization of the distribution area on the heat plate to achieve the even fluid distribution was conducted, and then the second heat plates were developed to reflect the research results. Another new three types of products with the second heat plates were manufactured and tested, too. The test results of the second heat plates were compared with those of the first heat plates to find out how the distribution area contributed to the thermal performances of the heat plates. The comparison showed that distribution area optimization could affect thermal performances of the high chevron angled plate positively, but the low chevron angled plate had little effect from the optimization. This is considered to be because the low chevron angled plate itself has a characteristic that the pressure drop is small.
4,000원
11.
2020.02 구독 인증기관 무료, 개인회원 유료
In this study, the effect of various pilot injection timings on combustion and emission characteristics were investigated in a common-rail direct injection (CRDI) diesle engine fueled with diesel-ethanol blends. The engine speed and engine load were controlled at constant 1500rpm and 70Nm, respectively. The tested fuels were DE0 (pure diesel fuel), DE5 (5 vol.% ethanol blended with 95 vol.% diesel oil), DE10 (10 vol.% ethanol blended with 90 vol.% diesel oil) and DE15 (15 vol.% ethanol blended with 85 vol.% diesel oil). The main injection timing was fixed at 0°CA TDC (top dead center), while various pilot injection timings including 25°CA BTDC (before top dead center), 20°CA BTDC and 10°CA BTDC were selected as the experimental variable. The experimental results showed that various pilot injection timings had little effect on the peak value of cylinder pressure, but had great influence on the start of combustion. The peak value of heat release rate (HHR) increased with the increase of ethanol content. However, the peak value of HRR reduced as the pilot injection is delayed. The diesel fuel containing 10% ethanol had a highest peak value of combustion pressure compared with the others, while the pilot injection timing occurred at 25°CA BTDC. On the other hand, the exhaust emissions of DE10 was also the lowest compared with the others. In addition, with the increase of ethanol content in diesel the PM and NOx emissions reduced.
4,000원
12.
2020.02 구독 인증기관 무료, 개인회원 유료
This paper aims at investigating the adhesive property at damage analysis according to the shape of the DCB test specimen made of Titanium, Dualumin as the high strength nonferrous metals. In this analysis, all three specimens had the lower holes bound by the cylinder support and the top holes were elongated with the rate of 6mm/min. The study results show that the longer the load block of DCB specimens, the more reliable and durable they are. It is utilized as the basic data at investigating the damage properties of adhesives in DCB specimens made of high strength nonferrous metals.
4,000원
13.
2020.02 구독 인증기관 무료, 개인회원 유료
In this study, the flat glass and adsorption pad were modeled using SolidWorks Simulation, to understand the deformation characteristics of the vertical flat glass by the adsorption pressure during vertical transport of LCD. The horizontal and vertical displacements and equivalent stresses of the flat glass were investigated by the structural analysis. From the displacement and stress visualization according to the adsorption pressure, the higher the adsorption pressure, the larger the glass surface protruded. The horizontal deformation of flat glass increased with increasing thickness and the vertical deformation increased with decreasing thickness. In addition, the maximum equivalent stress applied to the flat glass increased significantly as the adsorption pressure increased and the thickness decreased. As a result of the structural analysis, the thinner the thickness of the plate glass, the greater the effect on the adsorption pressure. Especially, the effect of the adsorption pressure was clearly observed at the thickness of 0.5mm.
4,000원
14.
2020.02 구독 인증기관 무료, 개인회원 유료
This paper deals with the dynamic control of redundant robot manipulator. Traditionally, the kinematic control schemes for redundant robot manipulator were developed from the point of speed and used under the assumption that the dynamic control of manipulator is perfect. However, in reality, the precise control of redundant robot manipulator is very difficult due to their dynamics. Therefore, the kinematic controllers for redundant robot manipulator were employed in the acceleration dimension and may be combined with the computed torque method to achieve the accurate control performance. But their control performance is limited by the accuracy of the manipulator parameters such as the link mass, length, moment of inertia and varying payload. Hence in this paper, the proportional and derivative control gains of the computed torque controller are optimized by the genetic algorithm on the typical payloads, and the neural network is applied to obtain the proper control gains for arbitrary loads. The simulation results show that the proposed control method has better performance than the conventional control method for redundant robot manipulator.
4,000원
15.
2020.02 구독 인증기관 무료, 개인회원 유료
In this paper, we investigate the relationship between control system of Bosch system and that of Delphi system by measuring the high and low voltage waveform, current waveform and fuel injection quantity of D-2 and R- engines. Waveform measurements are used the PICO scope and the CDS tester. The injectors of D-2 and R-engines were tested under no load condition using injector with normal fuel injection quantity, injector with small fuel injection quantity and injector with many fuel injection quantity. The relation between current energy and fuel injection quantity shows that the injector variation rate of D2-engine is much larger than that of R-engine. The injector current energy of the D2-engine was more linear than that of the R-engine, therefore making the system more stable. Although the control system of the D2-engine is a more stable system only in terms of the durability of the internal parts of the injector, the injector of the R-engine has a good response because the current value is large.
4,000원
16.
2020.02 구독 인증기관 무료, 개인회원 유료
The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.
4,000원
17.
2020.02 구독 인증기관 무료, 개인회원 유료
Commercial carbon fiber is sized with Bisphenol A type epoxy, a thermosetting resin, to prevent fiber damage due to friction during weaving and manufacturing processes. When the thermoplastic resin is used as the base material, the interface between the carbon fiber and the thermoplastic resin is very weak because the bonding force with the thermosetting resin is not good, which greatly affects the mechanical properties of the composite material. Therefore, in order to improve the mechanical properties of the thermoplastic composite material, a process of removing the epoxy sizing layer on the surface of the carbon fiber in a furnace is required. In this process, the physical properties of the carbon fiber are changed according to the change of carbon fiber heat treatment conditions. In this paper, the study was carried out to evaluate the tensile strength required for automobile parts by extrusion and injection of thermoplastic resin based carbon fiber composites. Depending on the heat treatment temperature and time of the carbon fiber was a slightly tensile strength of the carbon composite material occurs, the tensile strength of the carbon composite material with a 6 hour heat-treated carbon fiber was measured at 550 ℃ the highest to 93 MPa. When the heat treatment holding time is more than 6 hours or the heat treatment temperature is more than 600 ℃, it may be the damage to the carbon fiber, which can cause a decrease in the tensile strength of the carbon fiber composite material.
4,000원
18.
2020.02 구독 인증기관 무료, 개인회원 유료
This paper is one of basic studies for development of fuel rail to secure strength of GDI system. The fuel rail supports high pressure of 200~250bar and stores fuel while reducing pulsation during injection. Therefore, the structural characteristics of the conventional fuel rail was investigated with respect to stress and displacement. Then, the study focused on reducing stress concentration on fuel rail design to enhance the strength of each components. It was found that the maximum stress was not affected to the dimensions of taper lengths and angles of holes for fuel pipe. Also, it was found that the shape of holes for fuel pipe was key factor to reduce maximum stress, and the bridge between injector and mounting holder was effective structure to reduce the stress of injectors and displacement of the fuel rail system.
4,000원
19.
2020.02 구독 인증기관 무료, 개인회원 유료
In this study, carbon fiber Z-pins were fabricated by applying the different manufacturing process, and pull out test was performed for the dumbbell type of test specimens. Carbon fiber Z pins with smooth surface(type I) and stepped surface(type II, type III) were fabricated by using autoclave. Carbon fiber Z-pins with stepped surface were manufacturing method, that is, mold forming and machining process. The experimantal results show that carbon fiber Z pins have superior pull-out characteristics to carbon steel Z-pins. Pull-out load and pull-out toughness of carbon fiber Z pins with stepped surface are larger than those of carbon fiber Z-pins with smooth surface. Pull-out load and pull out toughness of mold f ormed Z-pin are 31% and 218% larger than those of smooth surfaced Z-pins, respectively.
4,000원
20.
2020.02 구독 인증기관 무료, 개인회원 유료
In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
4,000원
1 2