A Study on Heat Transfer Characteristics of Desktop PC CPU Cooling According to Variation of Heat Sink Shapes
The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.