The demand for materials with porosity is steadily increasing and the need for porous materials is increasing in fields such as chemical engineering and energy storage. In order to minimize trial and error, verifying design validity through finite element method at the design stage has the advantage to verify design validity with low cost. However there are limitations in finite element analysis using porous materials. In this study calculating the equivalent mechanical properties reflecting the porosity was carried out, and the first step was the isotropic elasticity in plane stress condition. The equivalent elastic modulus and the equivalent Poisson's ratio were derived through simulation. Assuming that the voids exist in a two-dimensional symmetrical shape and a constant distribution, the unit cell was defined and the equivalent mechanical properties were calculated. The specimen with same condition were measured through a universal test machine (UTM), the elastic modulus and Poisson's ratio were measured. The similarity between the value obtained through the simulation and the value measured through the experiment was under 5%, so the validity of this simulation was verified. With this result, FEM with porous materials will be used for design.
Because of the International Maritime Organization(IMO)'s regulation to regulate emissions of ships, a change is taking place to replace ship fuels from Heavy Fule Oil(HFO) to Liquefied Natural Gas(LNG). In the case of LNG, it is a material obtained by liquefying Natural Gas(NG), and it is -163 degrees below zero, and the volume is reduced to 1/600 level. The material of the tank that can store LNG must be a material that can safely store LNG in a cryogenic environment, and the materials of the tank that can store LNG are limited in the International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code). Among the materials listed in the IGC Code, 9% nickel steel is used as a material for LNG fuel propulsion tanks that are recently ordered because of relatively high mechanical properties under cryogenic environments. In this study, butt welding was performed on a 9% nickel steel material using Flux Cored Arc Welding(FCAW), the most widely used welding method in shipyards. In PARTI, after securing the welding conditions, cross-sectional observation results analysis, liquid penetrating test, and radiographic test were performed to verify the reliability of the weld.
본 연구는 해상풍력 터빈 블레이드 에어포일 설계를 다룬다. 풍력 터빈 설계의 목표는 특정 대기 조건에서 가능한 가장 높은 출력을 얻는 것이다. 공기역학적 부하에 대한 수학적 설명으로 최적의 블레이드 형상을 결정하는 문제는 복잡하고 많은 제약과 목표를 충족해야 한다. 본 연구의 목적은 여러 기준에 따라 풍력 터빈 블레이드의 최적화를 가능하게 하는 직접 설계 방법으로 두 가지 유형의 에어포일 모델 개발이다. 블레이드 요소 운동량 이론을 기반으로 유체역학적 풍력 터빈 설계에 대한 수학적 모델을 생성하고 효율을 향상시켰다. 결과적으로, CFD 시뮬레이션을 통해 고효율 에어포일 모델을 설계했고, 실험 데이터와의 비교를 통해 검증했다.
In this study, we used a numerical analysis program to study the molding conditions that affect the flow rate at the time of injection, using a spiral mold, which is mainly used for the evaluation of the flow rate of plastic resin. The mold temperature, melt temperature, and flow rate are composed of experimental factors. The three plastic forming factors were divided into five to six levels each. Since then, changes in the flow rate temperature were analyzed as the level of each forming factor increased. Experiments showed that all three forming factors increased the filling length of the spiral mold and the temperature of the flow front by a total of 34.53°C, melt temperatures increased the temperature of the flow front by a total of 34.53°C, the temperature increased by the flow rate was 23.5°C, and the temperature increased by the mold temperature was 1.99°C. It was shown that the melt temperature was the largest, followed by the flow rate and mold temperature. It was also possible to check the effect of plastic forming factors on the speed of the flow front.
Assessment of noise exposed population is to check the environment noise level and social influence in order to reduce the risks such as annoyance and disturbance that are generated by environmental noise. Also, this method suggests the preferential noise abatement policy and action plan by accurately finding the area that the noise causes harmful effect to human health. Recently, a noise map, which can predict noise in comprehensive area, is used for the assessment of noise exposed population, breaking from the methods using existing measures. In particular, countermeasure for noise can be considered more effectively by using assessment methods of noise exposed population for specific noise level, area and building types which are the main input factors in noise maps. In this study, we propose noise prediction at traffic noise due to noise map.
Parking gear is essential parts of automotive to park on flat or slope ground. Parking of, especially, big-sized vehicle such as bus and truck is very important problem related to safety. Stability of parking gear may differ from contact location between parking gear and pawl. The purpose of this study is to investigate the influence of stability depending on contact location using numerical analysis. Furthermore the results obtained by numerical analysis were applied to real vehicles to evaluate established-product of parking gear. As the results, safety criterion of parking gear showed below 0.31ton and thus it was confirmed that parking gear of this study was suitable to small-sized vehicle.
Solar energy is being constantly studied since it can reduce green house gas by adapting cooling and heating system of domestic architecture as a clean energy source. This study confirmed the reliability of experimental apparatus with temperature measurement of each components by developing cooling and heating system which is combined with artificial solar thermal energy using halogen lamp and refrigerator, examined the heat transfer characteristics according to room internal temperature and lamp distance with the materials of emissive plate (acrylic, copper and stainless). As a result of it, We found that the room internal temperature 18℃ was finer than 21℃ and 24℃ in case of heat transfer rate according to each components. Also, copper in the material change of emissive plate was showed finer heat transfer effects than stainless because of high thermal absorptivity when lamp distance was short.
The penetration depth, bead height, width, and internal porosity were analyzed to select the perfect penetration conditions for the STS316L tube material with an outer diameter of 38.1mm and a thickness of 3.4 mm. The welding conditions to secure a penetration depth of 3.4mm or more were selected. In addition, a welding range in which underfill does not occur was selected. The range of the selected conditions is the condition of a welding speed of 0.75 to 1.25m/min with an output of 2.0kW. The selected welding conditions were applied to STS316L tube orbital welding, and as a result of cross-sectional inspection after welding, a welded part of less than 4% of complete penetration and porosity was secured. The strength of the weld was measured to be more than 800kgf, and the hardness of the weld was found to decrease compared to the base material. The decrease in the hardness of the weld is judged by the annealing effect of the heat treated base material.
In this study, by using a system analysis program(Fluid Flow), the correlation between the location where cladding damage occurs frequently inside the power plant seawater pipe and flow characteristics is analyzed, and the root cause and improvement plan are reviewed. As a result, it was confirmed that a high flow velocity occurred in the backwash piping(7.64m/s) and the front and rear ends of the flow control valve(5.93m/s). In addition, it was confirmed that cavitation occurs when the seawater level decreases below the saturated water vapor pressure at the rear end of the orifice. These areas are locations where the internal cladding damage occurs frequently in power plants, and the main cause of damage is considered to be excessive flow velocity and cavitation in the pipe. In order to solve this problem, improvement method such as installation of backwash pipe orifices, change of pipe shape at the front and rear end of flow control valve, and change of orifice type were derived.
블레이드 개발에서 매우 중요한 요소는 에어포일 설계이다. 본 연구에서는 DesignFoil 프로그램을 통한 에어포일의 최적화에 관한 연구를 다룬다. 이를 위해, NACA 4-digit series 및 5-digit series 공식을 이용하여 좌표 값을 도출시키고, 이를 통해 구해진 초기 단면형상을 DesignFoil 프로그램에 입력시킨 뒤, 각 매개 변수(피칭 모멘트, 레이놀즈 수, 마하 수, 두께 비율 및 받음각)에 대하여 양력 대 항력 비율을 최적화시켰다. 그 결과, 에어포일 단면 좌표를 최적화시키고, VisualFoil 프로그램을 통해 에어포일의 성능을 확인하고 블레이드 형상을 결정했다.
When performing finite element analysis using materials with porosity the porosity shows different mechanical properties from the existing mechanical properties of the existing base materials. In this study the equivalent properties were calculated and verified by applying the representative volume element (RVE) method and assuming that the material with porosity is a 2D orthotropic material. In case of finite element analysis using porous material or composite material, it is inefficient to perform the analysis through material modeling. Based on the element volume and element stress values derived using the finite element analysis program, the representative stress values and elastic modulus matrix were calculated using Python. In addition, equivalent properties were derived using the calculated elastic modulus matrix. The pores were simulated by etching a thin plate specimen made of STS304 material in a certain pattern, and the elastic modulus and Poisson's ratio were measured through a UTM and compared with simulation results. It was confirmed that an error of 7.028% for elastic modulus and 10% for Poisson's ratio occurred, and through this, the validity of this simulation was verified.
In this study, gas flow pattern and temperature distribution in a laboratory scale low temperature furnace for carbonization were numerically analyzed. The furnace was designed for testing carbonization process of carbon fibers made from polyimide(PI) precursor. Nitrogen gas was used as a working gas and it was treated as an ideal gas. Three-dimensional computational fluid dynamics analysis for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The results showed that more uniform velocity profile and axisymmetric temperature distribution could be obtained by varying mass flow rate at the inlets.
Because of the International Maritime Organization(IMO)'s regulation to regulate emissions of ships, a change is taking place to replace ship fuels from Heavy Fule Oil(HFO) to Liquefied Natural Gas(LNG). In the case of LNG, it is a material obtained by liquefying Natural Gas(NG), and it is -163 degrees below zero, and the volume is reduced to 1/600 level. The material of the tank that can store LNG must be a material that can safely store LNG in a cryogenic environment, and the materials of the tank that can store LNG are limited in the International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code). Among the materials listed in the IGC Code, 9% nickel steel is used as a material for LNG fuel propulsion tanks that are recently ordered because of relatively high mechanical properties under cryogenic environments. In this study, the mechanical properties of butt welds were measured following the weld reliability evaluation of Flux Cored Arc Welding(FCAW) butt welds made of 9% nickel steel by PARTI. The measured mechanical properties are tensile strength, bending strength, hardness, and cryogenic impact test required by the classification for Welding Procedure Specification(WPS) approval.
블레이드는 바람 에너지를 전기 에너지로 변환하기 위한 풍력발전기 시스템의 핵심 요소이다. 블레이드의 공기역학적 설계는 적절한 에어포일을 선택하고 블레이드 축을 따라 최적의 단면을 결정하는 것이다. 본 연구의 목표는 블레이드 에어포일의 모델을 개발하고, 개발한 에어포일의 효율을 분석하는 것이다(블레이드 형상은 수정된 SM 시리즈 프로파일을 기반으로 함). 일반적으로 풍력 터빈 블레이드는 Cl/Cd에 민감하다. 본 연구의 초점은 X-Foil 프로그램을 통해 강한 바람과 돌풍에서의 최고 효율(Cl/Cd)을 위한 에어포일의 좌표를 최적화시키는 것이다. 국내 해역의 난류 특성, 돌풍 및 바람 조건에 대한 적절한 에어포일을 개발하기 위해서는 수치 해석을 통해 에어포일의 길이와 이에 따른 두께비(Y/C), 에어포일의 최대 두께비에 대한 상대 위치(Xd), S형 tail edge 및 비율 등을 계산하여 결정한다. X-Foil 프로그램을 통해 모델링된 2D 모델에 대하여 CFD(Computational Fluid Dynamics) 검증을 반복 수행하여 최적화시켰다.
A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of tire under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dashpots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force(T), damping coefficient (C) and stiffness of foundation(κ2) will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number(M), wave-number ratio(γ) and stiffness factor(ψ). The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.
Fused Deposition Modeling (FDM), also known as Fused Deposition Modeling (FFF), is the most widely used type of 3D printing at the consumer level. The FDM 3D printer extracts thermoplastic filaments such as ABS (Acrylonitrile Butadiene Styrene) and Polyactive Acid (PLA) through heated nozzles to dissolve the material. It works by applying layers of plastic to build platforms. Various demands for 3D printers increased, and among these demands, there was also a demand for various filament colors. ABS, one of the main filamentous materials for 3D printers, is easy to color in a variety of colors and has been studied to meet the needs of these users. Through quantitative measurements in this work, we confirm that color differences remain depending on the difference in placement on the 3D printer bad. In addition, the temperature of the specimen was measured at the start of 3D printing, during manufacturing, and at the completion of manufacturing, and the inner and central sides remained similar, but the outer sides were 5 degrees lower. These temperature differences accumulate as layers pile up, resulting in differences in weight or color, which in turn meet consumer and producer needs in the 3D printer industry.
In this study, the combustion characteristics of low calorific gas (LCG) fuels are investigated by numerical simulation. PREMIXED code is used to predict the flame structure and NO emission with two mechanisms, which are GRI 3.0 and USC II chemical reaction mechanisms for CH4 and LCG 8000 and LCG 6000, respectively. Also, elementary reactions related with production and destruction for OH radical are studied because OH radical is dominant for burning velocity and NO emission. As results, the production and the destruction of OH radical for CH4 and LCG 8000 using GRI 3.0 are dominated by reactions of No. 4, No. 2 and No. 3 and by No. 5, No. 3 and No. 7, respectively. For LCG 6000 using USC II, reactions of No. 3, No. 4 and No. 11 and of No. 7, No. 8 and No. 12 dominates to the production and the destruction, respectively. In addition, NO emissions for LCG gas fuel are generated by thermal NO because the flame temperatures are over 1800 K.
In this study, the performance was checked and the optimal conditions were found by machining the inner surface of a round pipe using the magnetic abrasive finishing method. In this experiment, an AL 6063 pipe was used as a sample. To check the performance of magnetic abrasive finising, the machining effect of different abrasive particle mixing ratio, rotation speed, and magnetic pole arrangement was analyzed through surface roughness (Ra) and weight removal measurement. The optimum mixing ratio was 3:1 of electrolytic iron to magnetic abrasive particles, the rotational speed was 1600rpm, and the best surface roughness was obtained in the N-S-N arrangement of magnetic poles.