This study examines the impact of Propeller blade pitch angle mismatch on Noise, thrust, and vibration in light aircraft. Tests were conducted using a simulator with one blade set at increased pitch angles (10°, 12°, 14°) compared to the standard 8°. Results showed that mismatches increased vibration (above 0.26 IPS), Noise levels, and caused operational issues such as fuel leakage and backfire. While thrust initially increased with pitch, it dropped at 14° due to fuel flow instability. These results highlight the need for strict pitch alignment tolerances to ensure optimal performance and safety in aircraft maintenance and operation.
Aircraft Noise is a sound that humans do not want. In this study, based on the Rotax 914 engine used in Korea, the Propeller blade angle was changed by 1 degree for the 3-leaf “K company” Propeller and the 3-leaf “G” wooden Propeller, and the engine RPM was changed to examine the Noise and thrust changes. The purpose of this study is to check whether Noise and thrust loss are the least at the engine's maximum RPM, and to propose an aircraft operation plan in the noisy aerodrome area based on the values. This research further seeks to identify optimal propeller configurations that balance acoustic performance and thrust efficiency. The results are expected to aid in formulating guidelines for quieter flight operations near populated areas.
The world's largest diesel power plant listed in the Guinness Book of World Records is Jordan's Amman Asian power plant, which produces a total of 573 MW of electric power. It consists of 38 units of 15MW capacity, and KEPCO achieved high profitability through the power plant. If a large capacity of 50MW clsss is applied, it will be newly listed in the Guinness Book of World Records even if only 12 units are constructed. Therefore, large-scale overseas orders for diesel power plants that require large capacity are expected in the future. The purpose of this study is to derive a installation offset by performing the shaft alignment analysis for large capacity 50MW shaft system. As a result, the offset of shaft system for the 50MW diesel power generation equipment was successfully derived through the bearing influence assessment and introduction of arrangement slope for main engine bearings.
Recently, among the newly developed cities, there has been a development of new towns around existing chemical manufacturing plants. Accordingly, the aim was to understand the impact of factory noise on the residential areas of the newly developed city. To this end, noise from the factories was measured in accordance with the noise measurement methods recommended by the Ministry of Environment, in order to assess the reality of factory noise sources. Additionally, to understand the impact of factory noise on nearby residential areas, noise maps were created and the noise reduction effects were investigated. The purpose of this study is to establish appropriate low-noise measures to address noise complaints around factories.
Advancements in technology for large aircraft have led to the development of new materials for aviation. Traditional alloy-based components in aircraft, once prevalent, are now being replaced by composite materials that offer superior performance in terms of strength and operational limits. Notably, propellers have evolved from wood to composite materials, finding application in contemporary small aircraft. In this context, there is a need for research on the composite propellers of the 3-blade "W Company," based on the widely used Rotax 914 engine in South Korea. This study aims to investigate the changes in noise and thrust corresponding to variations in propeller blade angles and engine RPM, with the goal of selecting the optimal propeller pitch angle. Particularly, the "W Company's" propellers are durable and cost-effective, widely adopted in domestic aircraft. The research seeks to propose an effective method to minimize noise while maintaining the necessary thrust, contributing to the smooth operation of aircraft and promoting coexistence with local communities.
In the past, aviation technology developed from wood to alloys to composite materials. Propellers have also evolved from wood to composite materials for modern small aircraft. In this context, research is needed on a three-blade composite propeller based on the Rotax 912 engine, which is widely used in Korea. In this study, the goal is to select the optimal propeller pitch angle by investigating noise changes according to changes in blade angle and engine 4000RPM of three types of three-blade propellers different from each propeller manufacturer. By comparing the noise of the three types of propellers most commonly used in Korea and suggesting the minimum noise blade angle for each propeller, we aim to help aircraft operators select propellers and resolve noise complaints around airfields.
Aircraft noise is something humans don't want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree and the engine RPM was changed to review the three-wing “G Company” propeller and the three-wing GSC wooden propeller. Select the best propeller pitch angle by measuring the change in propeller noise and thrust and the change in engine RPM due to the change in noise and thrust. We would like to present a propeller pitch angle suitable for the location of the airfield and the operation of the aircraft. Based on this, we would like to help resolve noise complaints around the airfiled.
Noise is a sound that people don't want. In this study, noise is measured for SR20, a general aviation trainer used in Korea. In addition, noise measurement points are selected at Muan Airport, where most of the domestic trainers fly under the supervision of the Ministry of Land, Infrastructure and Transport, and the measured data are analyzed based on this. We also want to analyze the noise characteristics of SR20 aircraft through frequency analysis of the noise characteristics of SR20 aircraft are unique. We want to use this to understand what type of noise the trainer affects in future studies. this study will improve the reliability of the noise prediction scenario by comparing and analyzing the actual measured and predicted values when using the noise prediction program.
Most domestic pilots are trained at local airfields using propeller aircraft. Training aircraft are mainly trained in the airspace around the aerodrome, and mainly take-off and landing exercises that require a lot of practice among flight control skills. Aircraft noise is a sound that humans do not want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree for the 3-leaf “K company” propeller and the 3-leaf GSC wooden propeller, and the engine RPM was changed to examine the noise and thrust changes. The purpose of this study is to check whether noise and thrust loss are the least at the engine's maximum RPM, and to propose an aircraft operation plan in the noisy aerodrome area based on the values.
Noise is a sound that humans do not want. In this study, noise is measured for C172, the most frequently used general aviation trainer in Korea and abroad. In addition, in this study, noise measurement points are selected for Muan Airport, where most of the domestic training aircraft fly under the supervision of the Ministry of Land, Infrastructure and Transport. Based on this, the measured data is scaled and analyzed. In addition, we intend to analyze what characteristics C172 aircraft have unique through frequency analysis of noise of C172. Through this, it is intended to understand what type of noise training aircraft affect in future studies.
Noise is a sound that humans do not want. In this study, Based on the Rotax 912 engine, which is most commonly used in Korea, we will look at noise and thrust changes by changing the propeller blade angle by 1 degree for the two-blade Sensenich Propeller and the three-blade Wrap drive Propeller. Through this, we want to check which part of the propeller angle produces the least noise and the least thrust loss for each propeller, and propose a propeller operation plan in a noisy area based on the value.
This study indirectly measures the vibration value corresponding to the abnormal vibration generated by the small engine for light aircraft to which the dual carburetor is applied by the pressure difference from each carburetor. It relates to a system for outputting a warning to a pilot, comprising two pressure gauges for measuring the pressure from each carburetor and a warning signal output unit for outputting a warning signal corresponding to the pressure difference measured by the two pressure gauges do.
A theoretical model has been studied to describe the sound radiation analysis for structure vibration noise of tire under the action of random moving line forces. When a tire is analyzed, it had been modeled as curved beams with distributed springs and dashpots that represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y=0 and to be axially infinite. The curved beam material and elastic foundation are assumed to be lossless Bernoulli-Euler beam theory including a tension force(T), damping coefficient (C) and stiffness of foundation(κ2) will be employed. The expression for sound power is integrated numerically and the results examined as a function of Mach number(M), wave-number ratio(γ) and stiffness factor(ψ). The experimental investigation for structure vibration noise of vehicle tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. Results strongly suggest that operation condition in the tire material properties and design factors of the tire govern the sound power and sound radiation characteristics.
Assessment of noise exposed population is to check the environment noise level and social influence in order to reduce the risks such as annoyance and disturbance that are generated by environmental noise. Also, this method suggests the preferential noise abatement policy and action plan by accurately finding the area that the noise causes harmful effect to human health. Recently, a noise map, which can predict noise in comprehensive area, is used for the assessment of noise exposed population, breaking from the methods using existing measures. In particular, countermeasure for noise can be considered more effectively by using assessment methods of noise exposed population for specific noise level, area and building types which are the main input factors in noise maps. In this study, we propose noise prediction at traffic noise due to noise map.
The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.
There has been an increase of using Bosch Process to fabricate MEMS Device, TSV, Power chip for straight etching profile. Essentially, the interest of TSV technology is rapidly floated, accordingly the demand of Bosch Process is able to hold the prominent position for straight etching of Si or another wafers. Recently, the process to prevent under etching or over etching using EPD equipment is widely used for improvement of mechanical, electrical properties of devices. As an EPD device, the OES is widely used to find accurate end point of etching. However, it is difficult to maintain the light source from view port of chamber because of contamination caused by ion conflict and byproducts in the chamber. In this study, we adapted the SPOES to avoid lose of signal and detect less open ratio under 1 %. We use 12inch Si wafer and execute the through etching 500um of thickness. Furthermore, to get the clear EPD data, we developed an algorithm to only receive the etching part without deposition part. The results showed possible to find End Point of under 1 % of open ratio etching process.