Yellow-fleshed "Sweet Gold" kiwifruit on Jeju Island were studied to examine how irrigation and soil moisture control affected changes in photosynthetic traits and fruit quality during fruit maturation (120 to 170 days after full bloom). Concerning photosynthetic characteristics, the photosynthetic rate decreased by 10-19%, stomatal conductance by 24-47%, and transpiration rate by 8-25%, when compared to conventional irrigation, as irrigation was reduced and soil moisture content decreased. Fruit weight showed a tendency to increase until harvest, and while a lower soil moisture content led to a less pronounced increase in fruit weight, this difference was not statistically significant. The dry matter rate exhibited a similar trend to the change in fruit weight. Sugar content demonstrated a continuous increase after 130 days, with lower irrigation amounts resulting in higher levels of sugar content due to decreased soil moisture. The Hue value (h°) exhibited a continuous decrease after 140 days from full bloom, correlating with declining soil moisture content. After 130 days from full bloom, soluble sugar content increased rapidly while starch content gradually decreased after 150 days from full bloom. However, with conventional irrigation, the increase in soluble sugar content tended to be less noticeable. This study confirmed that in yellow-fleshed ‘Sweet Gold’ kiwifruit, managing irrigation and soil moisture reduction during the ripening period can lead to decreased fruit weight but increased dry matter, sugar content, and expression of flesh color, ultimately enhancing fruit quality and expediting ripening.
Synovial cysts of the temporomandibular joint are rare. They commonly occur in the wrist, knee and feet. The main symptoms of synovial cysts occurring in the temporomandibular joint include preauricular pain and swelling, and surgical removal is the gold-standard treatment. A 54-year-old woman who presented with swelling of the right temporomandibular joint visited Kyungpook National University Dental Hospital. She had undergone enhanced computed tomography from another hospital, which showed a 1.1 × 0.8 × 1 cm well-defined rounded cystic lesion on the lateral area of the right temporomandibular joint. A synovial or ganglion cyst was suspected. The cystic lesion was surgically removed under general anesthesia and was histopathologically diagnosed as a synovial cyst. Histopathological findings show a lumen surrounded by loose fibrous tissue, and the lining is in a folded form and is composed of synovial cells.
PURPOSES : The turning movement of vehicles is directly affected by such factors as vehicle length, wheelbase, steering angle, articulated angle, and wheel steering. Therefore, it is necessary to analyze the impact of changes in each factor on the turning of the vehicle. Because a vehicle with a long body, such as an articulated bus, makes a wide turn, this study analyzes the swept path of the driving vehicle considering the specifications of the vehicle.
METHODS : This study was conducted by dividing driving routes into four routes of two-lane four-way roundabouts, and the turning conditions were examined for six types (Type 1–6) that simulated actual articulated bus data. The same vehicle specifications as those of the actual articulated bus were applied to the road design simulation (AutoTURN Pro), and the width of the swept path for the articulated bus was investigated based on the wheel steering control. Using a virtual reference line for dividing the inscribed circle into lanes of the roundabout by 5°, the driving width of the swept path was measured and the angle at which the driving width was largest during driving through the turning intersection was examined. In addition, the changes in the driving width of the swept path according to the wheel steering control under the same wheel turning conditions, as well as the articulated and steering angles, were investigated.
RESULTS : The driving width of the swept path for the vehicle (Type 1) with the front wheel control function being an all-wheel system was less than that of an articulated bus with the largest driving width of 15° after entering the roundabout and 15° before entering the roundabout (Type 2). Furthermore, although the specifications of the vehicles were the same, it was determined that Type 5 was superior to Type 6 after reviewing the driving width in light of changes in the steering and articulated angles.
CONCLUSIONS : The results of this study are expected to contribute to the field of road design considering traffic safety when large vehicles, such as articulated buses, turn on roundabouts or curved road sections.
PURPOSES : The "Super-Bus Rapid Transit" (S-BRT) standard guidelines recommend installing physical facilities to separate bus lanes, so as to remove possible conflicts with other traffic when using an existing road as an S-BRT route. Based on a collision simulation, we reviewed the protective performance and installation method of a low-profile barrier, i.e., one that does not occupy much of the width of the road as a physical facility and does not obstruct the driver's vision.
METHODS : The LS-DYNA collision analysis software was used to model the low-profile barrier, and a small car collision simulation was performed with two different installation methods and by changing the collision speeds of the vehicle. The installation methods were divided into a fixed installation method based on on-site construction and a precast method, and collision speeds of 80 and 100 km/h were applied. The weight of the crash vehicle was 1.3 tons, and the segment lengths of the low-profile barriers were 2.5 and 4.0 m, respectively. The lowprofile barriers were modeled as precast concrete blocks, and the collision simulation for a fixed concrete barrier was performed by fixing the nodes at the bottom of the low-profile barrier. The low-profile barrier comprised a square cross-section reinforced concrete structure, and the segments were connected by connecting steel pipes with varying diameters to wire ropes.
RESULTS : From comparing and analyzing the small car collision simulations for the changes in collision speeds and installation methods of the low-profile barrier, a significant difference was found in the theoretical head impact velocity (THIV) and acceleration severity index(ASI) for the 2.5-m barrier at a collision speed of 80 km/h. However, the differences in the installation method were not significant for the 4.0-m barrier. The occupant safety index with a collision speed of 80 km/h was calculated to be below the limit regardless of the installation method, and the length of the segment satisfied the occupant protection performance. At a collision speed of 100 km/h, when the segment length of the 2.5-m barrier was fixed, the THIV value exceeded the limit value; thus, the occupant protection performance was not satisfied, and the occupant safety index differed depending on the installation method. The maximum rotation angle of the vehicle, which reflects the behavior of the vehicle after the collision, also varied depending on the installation method, and was generally small in the case of precast concrete.
CONCLUSIONS : Low-profile barriers can be installed using a fixed or precast method, but as a result of the simulation, the precast movable barrier shows better results in terms of passenger safety. Therefore, it would be advantageous to secure protection performance by installing a low-profile barrier with the precast method for increased safety in high-speed vehicle collisions.
PURPOSES : In the case of a turning maneuver at an at-grade intersection or changing the driving path, the trajectory of a vehicle with a long body, such as a large bus or an articulated bus, should be analyzed from the perspective of road design. In this study, an articulated bus was selected to analyze the off-tracking, swept path width, and lane encroach hment for vehicle turning.
METHODS : In this study, four scenarios were developed for right- and U-turn situations. For the right-turn situation, cases were divided into radii of 15 m (Scenario 1) and 40 m (Scenario 2). For the U-turn situation, the cases were analyzed based on a U-turn after stopping at the stop line (Scenario 3) and without stopping at the stop line for the U-turn (Scenario 4). Each scenario was examined at 5° (Right-turn) and 10° (U-turn) angles to analyze the off-tracking, swept path width, and lane encroachment. In addition, four Global Positioning System (GPS) antennas were installed on top of the articulated bus to obtain the driving trajectory of the vehicle. GPS locational reference points were marked on the testing ground to improve positioning accuracy.
RESULTS : As a result of the right-turn analysis at an intersection radius of 15 m (Scenario 1), the average off-tracking per angle was 1.04 m, the average swept path width was 3.89 m, and the lane encroachments occurred at an angle of 65° to 70°. For the right-turn analysis at an intersection radius of 40 m (Scenario 2), the average off-tracking per angle was 3.71 m, and the average swept path width was 3.31 m. Unlike the results for the 15-m radius, no lane encroachment was found. Furthermore, the averages of the off-tracking in the at-grade intersection U-turn situation were 2.65 m (Scenario 3) and 2.54 m (Scenario 4), and the average swept path width was 6.15 m.
CONCLUSIONS : The required driving width when an articulated bus performs a turning maneuver at an at-grade intersection was analyzed, revealing the implications that must be considered for busway design.
PURPOSES : This study was conducted to analyze the driving width of the vehicle body and off-track width of front-rear tires when a large vehicle or an articulated bus passes through a roundabout.
METHODS : The driving width was measured using two methods considering the off-tracking tire and the size of the vehicle body. The test conditions of the roundabout were considered as follows: number of entry/exit sections (three-legs roundabout and four-legs roundabout), number of lanes (one lane and two lanes), driving speed (10 km/h, 20 km/h, and 30 km/h), driving trajectory (centerline and maneuver), and driving path (right turn, straight, left turn, and U-turn). The driving trajectories of large buses or articulated buses were analyzed using a road design simulation tool (AutoTURN Pro).
RESULTS : Consequently, it was observed that the driving width calculated using the off-track width of the front and rear tires was lower than that analyzed for the vehicle body. The width was smaller in the case of driving in the one-lane roundabout than that in the two-lane roundabout. In particular, it was analyzed that the situation in which the turning path invades the lane appeared in left-turn (East → South) and U-turn (East → East) situations. The width was narrower in the case of driving in the one-lane roundabout than that in the two-lane roundabout.
CONCLUSIONS : The study results are expected to be applied for designing roads when large buses or articulated buses are selected as design vehicles.
PURPOSES : The percentage of vehicle overturning accidents is 16.3% of vehicle alone fatal accidents, with a fatality rate of 9.0%, accounting for a high proportion, and heavy vehicles with a high center of gravity are vulnerable to overturning accidents. In the standard guidelines of Super-Bus Rapid Transit(S-BRT), it is recommended to install physical facilities that separate buses from other traffic on dedicated bus ways, and lane separation facilities are being developed. To develop low-profile lane separation facilities that do not interfere with sight obstruction for pedestrians and drivers, it is necessary to review the height of lane separation facilities to prevent overturning crashes of heavy vehicles.
METHODS : Heavy vehicle impact conditions of 8ton-55km/h-15°, 8ton-55km/h-20°, 8ton-65km/h-15°, and 8ton-65km/h-20°were applied to compare the vehicle behavior by the height of lane separation facilities using LS-DYNA, a three-dimensional nonlinear impact analysis program based on speed and angle changes. In addition, the behavior of the vehicle after the collision was analyzed to examine the impact conditions in which an overturning crash occurs when a heavy vehicle collides with a low-profile lane separation facility and the appropriate height of the facility to prevent overturning.
RESULTS : In general, under the 8ton-65km/h-15°condition, which is a heavy vehicle impact condition used in the performance standard of the barrier, the vehicle’s behavior after the collision was stable as the height of the lane separation facility increased.
CONCLUSIONS : Therefore, when the impact conditions were 8ton-65km/h-15°or less, it was determined that the appropriate height to prevent the condition of the lane separation facility was 400mm or more.
PURPOSES : According to the guidelines of Super Bus Rapid Transit(BRT), dedicated bus roads and dedicated bus lanes shall be used, and physical lane separation facilities should be installed for lane separation. Therefore, physical barriers (lane separation facilities) are being developed for exclusive bus operations. Low-profile lane separation facilities should be developed that do not interfere with the views of pedestrians and drivers. The appropriate heights of the barrier to prevent overriding in the event of passenger car crashes were reviewed.
METHODS : By applying the performance standards of the safety barrier, passenger protection performance according to the change in the height of the lane separation facilities and the vehicle behavior after the crash were analyzed using computer crash simulations. Crash criteria of 1.3 ton-60 km/h-20°and 1.3 ton-80 km/h-20°were used as vehicle impact conditions. The simulation was performed by increasing the height of the lane separation facilities from 200 mm to 500 mm. To prevent the deformation of the lane separation facilities owing to a vehicle crash, the boundary conditions of the node under the lane separation facilities were fixed and modeled.
RESULTS : The collision simulation results showed that, for a collision speed of 60 km/h, no override occurred for the height of the lane separation facility of 250 mm or more, and for a collision speed of 80 km/h, no override occurred for the height of the lane separation facility of 300 mm or more.
CONCLUSIONS : Therefore, the appropriate height of the lane separation facility for the collision of a passenger car with a collision speed of 80 km/h or less was determined to be 300 mm or more.
PURPOSES : This study is performed first to define the aging of road facilities and to analyze the effects of environmental factors on the deterioration of median barriers.
METHODS : The aging of road facilities is defined using an analytical hierarchy process (AHP). The first stage is associated with the period, facilities, and maintenance, whereas the second stage is associated with the details. The effects of environmental factors on the deterioration are analyzed by measuring the carbonation depth and compression strength. Two regions, i.e., Gangwon and Busan, are compared separately. Top, middle, and bottom samples are analyzed for both regions.
RESULTS : Based on the result of the AHP analysis, weights for period (0.220), function (0.410), and maintenance (0.370) are derived. The average carbonation depths are 11.12 and 9.78 mm for Kangwon and Busan, respectively. The estimated values of compressive strength at Gangwon are 19.7 MPa (Wonju), 24.7 MPa (Samcheok A), and 25.9 MPa (Samcheok B), 20.2 MPa (Haeundae), 23.8 MPa (Yeongdo), and 29.5 MPa (Nam).
CONCLUSIONS : The aging of road facilities is associated with subpar functionality and durability. Furthermore, the median barriers constructed in the Gangwon region deteriorated more significantly than those in the Busan region owing to environmental factors. In addition, the bottom samples are more affected by aging than the top samples.
PURPOSES : In this study, we review the method and equations suggested in the usual guidelines to calculate the lane widening for curved sections, and proposed values of the widths and the amount of widening that reflected the driving trajectory of an articulated bus.
METHODS : A simulation was used to obtain the trajectory of articulated bus, which is adequate for a Super-Bus Rapid Transit(S-BRT) service with the longest length of the design vehicle. This study was conducted by dividing the trajectory into curved and tangential sections, and the extent of widening was analyzed by changing the rotation angle by 5°. In addition, the results related to the amount of widening from the conducted analysis were applied to particular situation of right turns of an articulated bus at urban intersection. The possible conflict situations that may occur were analyzed.
RESULTS : When analyzing the rotation angle at which the size of the driving width was set to be the largest for each lane center radius, the rotation angle for a lane center radius ( =15m) was 35°, the rotation angle for a lane center radius ( =20m) was 45°, the rotation angle for a lane center radius ( =25m) was 55°, and the rotation angle for a lane center radius ( =30m) was 60°.
CONCLUSIONS : As the radius increases, the required driving width and the amount of widening decrease. The rotation angle that requires the largest driving width is presented. The results show that as the central radius ( ) of the lane increases, the amount of widening for each rotation angle decreases. In addition, based on the results of the analysis of the driving width for each rotation, the trajectory of an articulated bus was applied to an at-grade intersection to check the distance required for widening from the beginning point of the curve.
판형 열교환기는 1920년대부터 본격적으로 상업화되었으며, 이후 판형 열교환기의 기본 컨셉은 지금까지도 거의 변화가 없었지만 고온, 고압 그리고 대용량 열교환에 적용되기 위해 설계 및 제작 방법들이 혁신적으로 발전하여 지금에 이르게 되었다. 판형 열교환기의 개발 트렌드는 전열 효율이 좋으면서 압 력강하가 낮고 또한 유체 분배가 잘되는 전열판의 개발과 일치한다. 본 연구에서는 이러한 트렌드를 만족 시키는 선박용 중속엔진 오일 냉각용 판형 쿨러 개발과 관련된 주요 과정들을 소개하고, 또한 개발된 판형 오일쿨러의 전열성능을 실험적으로 분석하여 이에 대한 결과를 제공하고자 한다. 본 연구에서 판형 쿨러는 구조적 특징으로 인해 직접 판벽 온도를 측정할 수 없어 수정된 Wilson Plot 방법을 응용하여 열전달계수를 구하였다. 오일-물 실험 전에 물-물 실험을 통해 우선 물측의 열전달계수와 압력강하량을 구하였고, 그 결과를 바탕으로 오일측의 열전달계수를 구하였다. 양측 모두 유량 증가에 따라 열전달 성능은 증가하였지 만, 압력강하량도 동시에 증가하였다. 그리고 실험을 통해 본 연구에서 개발된 판형 오일쿨러가 개발목표치를 성공적으로 달성하였음을 확인할 수 있었다.
The purpose of this study is to experimentally figure out thermal performances of a newly developed wavy patterned heat plates(first heat plates) which are known to have better thermal performances than the conventional heat plates. Three types of products were made with high and low chevron angled plates. The test results show that overall heat transfer coefficients and pressure drops increased with flow rates and chevron angles just like other studies. Another purpose of this study is to find a way to reduce pressure drops while maintaining or even improving the heat transfer characteristics of the first heat plates. Research on optimization of the distribution area on the heat plate to achieve the even fluid distribution was conducted, and then the second heat plates were developed to reflect the research results. Another new three types of products with the second heat plates were manufactured and tested, too. The test results of the second heat plates were compared with those of the first heat plates to find out how the distribution area contributed to the thermal performances of the heat plates. The comparison showed that distribution area optimization could affect thermal performances of the high chevron angled plate positively, but the low chevron angled plate had little effect from the optimization. This is considered to be because the low chevron angled plate itself has a characteristic that the pressure drop is small.
A gasketed plate heat exchanger(GPHE) requires a much smaller installation space than a shell & tube heat exchanger because of its compact and good thermal performances. However, GPHEs have a disadvantage of being relatively vulnerable to high temperature and pressure due to rubber gaskets. To overcome a GPHEs’ disadvantage, Welded Block type Plate Heat Exchangers(WBPHE) have been developed. The flow pattern and heat transfer principle of WBPHE are very similar to GPHEs, so they are very compact and can be applied to high temperature and pressure. In this study, the structure and characteristics of WBPHE are briefly introduced, and its thermal performances were conducted experimentally using hot and cold water in the Reynolds number’s range from 5,500 to 10,000. Test results were compared with the experimental correlations of other researchers, which shows that significant deviations were noticed in the heat transfer coefficient predictions with a deviation range from 31% to 85%. The previous friction factor correlations also predicted the current results with big errors from 25% to 45%. These deviations are expected to be due to different chevron angles between previous studies and the current study, and also the end-plate effect is expected to be one of the potential causes that led to these deviations.
해외 자회사로부터 본국에 있는 모기업으로의 본국 송금은 다국적 기업에게는 글로벌전략을 추진 하는 데 있어서 중요한 문제이고 국가적으로는 해외직접투자의 효과에도 영향을 미칠 수 있는 문제 이다. 본 연구는 해외 자회사와 본국 모기업의 관계가 대리인과 주인 관계라는 것에 주목하여 대리 인인 해외 자회사의 관리자구성이 본국 송금에 어떠한 영향을 미치는지를 조사하였다. 해외에 진출 한 637개 한국다국적기업 자회사의 본국 송금과 관리자구성을 분석한 결과 본 연구는 자회사의 관리자급에서 현지인 관리자의 비율이 높을수록 본금 송금이 줄어든다는 것을 발견하였다. 또한, 이러한 현지인 관리자의 비율과 본국 송금의 관계는 자회사의 소유 형태와 자회사의 나이에 따라 달라진다는 것을 발견하였다. 기존의 연구들이 국가의 세금과 내부적 통제에 초점을 맞춰 본국 송금을 설명한 것에 비해 본 연구는 자회사의 인력구성이 본국 송금에 영향을 미칠 수도 있다는 것을 보여주어 본국 송금 연구에 새로운 방향을 제시할 뿐만 아니라 자회사가 모기업의 지시만을 따르는 수동적인 조직이 아니라는 최근의 시각에도 시사점을 주고 있다.