PURPOSES : In this study, we review the method and equations suggested in the usual guidelines to calculate the lane widening for curved sections, and proposed values of the widths and the amount of widening that reflected the driving trajectory of an articulated bus.
METHODS : A simulation was used to obtain the trajectory of articulated bus, which is adequate for a Super-Bus Rapid Transit(S-BRT) service with the longest length of the design vehicle. This study was conducted by dividing the trajectory into curved and tangential sections, and the extent of widening was analyzed by changing the rotation angle by 5°. In addition, the results related to the amount of widening from the conducted analysis were applied to particular situation of right turns of an articulated bus at urban intersection. The possible conflict situations that may occur were analyzed.
RESULTS : When analyzing the rotation angle at which the size of the driving width was set to be the largest for each lane center radius, the rotation angle for a lane center radius ( =15m) was 35°, the rotation angle for a lane center radius ( =20m) was 45°, the rotation angle for a lane center radius ( =25m) was 55°, and the rotation angle for a lane center radius ( =30m) was 60°.
CONCLUSIONS : As the radius increases, the required driving width and the amount of widening decrease. The rotation angle that requires the largest driving width is presented. The results show that as the central radius ( ) of the lane increases, the amount of widening for each rotation angle decreases. In addition, based on the results of the analysis of the driving width for each rotation, the trajectory of an articulated bus was applied to an at-grade intersection to check the distance required for widening from the beginning point of the curve.