In this paper, the pull-out characteristics of composite Z-pins with various groove shapes was investigated. The groove shape of composite Z-pins was made by applying temperature and pressure to the top and bottom of laminated composites inside the autoclave. Then, the dumbbell type of pull-out test specimen was made by applying adhesive bond. Six types of pull-out test specimens were fabricated by changing the groove length. Pull-out load and displacement sere observed for those specimens with different groove ratio. The results show that the maximum pull-out load of the grooved pin with grooved ratio 0.4 was increased up to 30.6% by comparing the plain pin. The grooved pin has a high pull-out resistance even after the fracture of the interface.
In this study, carbon fiber Z-pins were fabricated by applying the different manufacturing process, and pull out test was performed for the dumbbell type of test specimens. Carbon fiber Z pins with smooth surface(type I) and stepped surface(type II, type III) were fabricated by using autoclave. Carbon fiber Z-pins with stepped surface were manufacturing method, that is, mold forming and machining process. The experimantal results show that carbon fiber Z pins have superior pull-out characteristics to carbon steel Z-pins. Pull-out load and pull-out toughness of carbon fiber Z pins with stepped surface are larger than those of carbon fiber Z-pins with smooth surface. Pull-out load and pull out toughness of mold f ormed Z-pin are 31% and 218% larger than those of smooth surfaced Z-pins, respectively.
Rolling contact fatigue(RCF) is a major cause of failure that appears in components of rolling contacts. In the recent years, the fatigue propagation and failure have been an important issue in respect of the safe operation and to reduce the noise and vibration of the rolling contact components. The water-contaminated lubrication is known to be one of the significant factors that reduces the lifetime of the rolling contact components. Thus, in this study, the effect of water-contaminated lubrication environment on the rolling contact fatigue was investigated. Bearing life testing was performed in two different lubrication conditions (i.e. normal lubrication environment and water-contaminated lubrication environment). The effect of the debirs on the rolling contact fatigue could be eliminated by establishing the debris filter system. Microscopic features of the rolling contact surfaces were examined using energy dispersive spectrometry and non-contact 3D measurement system. In the case of the water-contaminated lubrication, the increase of surface roughness values up to 17.6% was observed. The oxidation state and pattern of the rolling contact surfaces were very different depending on the lubrication environment. It was also found that the bearing rating life, , was decreased significantly in the watercontaminated lubrication condition. The amount of reduction was about 49.7%.