In this study, STS316L powders prepared by gas atomization are used to manufacture bulk structures with dimensions of 10 × 10 × 10 mm3 using selective laser melting (SLM). The microstructures and hardness of the fabricated 316L stainless steel has been investigated with the laser beam overlap varied from 10% to 70%. The microstructures of the fabricated STS316L samples show a decrease in the balling and satellite of powders introducing defect in the bulk samples and the porosity caused by the gap between the molten metal pools disappearing as the overlap ratio increases, whereas a low overlap ratio results in significant balling and a large amount of isolated powders due to the increased gap between the melt pools. Furthermore, the highest value in Vickers hardness is obtained for the sample fabricated by 30% overlapped laser beams. These results show that the overlap ratio of laser beams in the SLM process should be considered as an important process parameter.
Rolling contact fatigue(RCF) is a major cause of failure that appears in components of rolling contacts. In the recent years, the fatigue propagation and failure have been an important issue in respect of the safe operation and to reduce the noise and vibration of the rolling contact components. The water-contaminated lubrication is known to be one of the significant factors that reduces the lifetime of the rolling contact components. Thus, in this study, the effect of water-contaminated lubrication environment on the rolling contact fatigue was investigated. Bearing life testing was performed in two different lubrication conditions (i.e. normal lubrication environment and water-contaminated lubrication environment). The effect of the debirs on the rolling contact fatigue could be eliminated by establishing the debris filter system. Microscopic features of the rolling contact surfaces were examined using energy dispersive spectrometry and non-contact 3D measurement system. In the case of the water-contaminated lubrication, the increase of surface roughness values up to 17.6% was observed. The oxidation state and pattern of the rolling contact surfaces were very different depending on the lubrication environment. It was also found that the bearing rating life, , was decreased significantly in the watercontaminated lubrication condition. The amount of reduction was about 49.7%.
When processing with wood floor covering on wet ondol floor, there are frequent defects caused by floor condensation, floor loosening, lowering of adhesiveness, wood contraction and swelling. The working method is still conventional with problems of lower indoor heating efficiency. Accordingly, ordinary wood floor covering is too expensive without any special functions or features, and it is necessary to suggest reasonable solutions or methods.
목재 건조의 용이성 및 품질확보, 2차 보존처리를 위한 기초자료 확보를 위해 초고주파를 이용한 캐나다산 직수입 미송의 가열 건조 특성은 다음과 같다. 초고주파 조사 후 목재 내부 온도변화 곡선을 분석한 결과 원주목은 3kW 30분 및 120분 가열 할 경우, 판목은 4kW 3분 및 9분 가열 시 안정적인 열분포와 소비 열량, 표면 함수분포 확보가 가능한 것으로 나타났다. 특히 초고주파 가열에 따른 표면 함수분포는 매우 균일한 Leveling이 이루어진 것으로 나타났으며, 함수 감소율도 중량대비 30% 이상인 것으로 나타나 건조효율이 우수한 것으로 나타났다. 또한 소비 열량 분석 결과에 따라 2차 액상 보존처리를 위한 침지 시 대량의 보존처리제 침투가 가능할 것으로 사료되므로, 초고주파 가열 목재는 빠른 함수감소 및 건조 특성과 많은 열량의 소비가 가능하여 산업재로의 사용 및 2차 응용제품 개발에 우수한 특성이 있는 것으로 사료된다.