In order to overcome the limitations of linear vibration energy harvesters and those using mechanical plucking, magnetic plucking vibration energy harvesters (MVEs) have garnered significant interest. This paper presents parametric studies aimed at proposing design guidelines for MVEs and compares two magnetic force models that describe interactions between two permanent magnets. A mathematical model describing the energy harvester is employed, followed by the introduction of two magnetic force models: an analytic model and an inverse square model. Subsequently, numerical simulations are conducted to investigate dynamic characteristics of MVEs, analyzing results in terms of tip displacement, voltage output, and harvested energy. Parametric studies vary the distance between magnets, the speed of the external magnet, and the beam shape. Results indicate that reducing the distance between magnets enhances energy harvesting effectiveness. An optimal velocity for the external magnet is observed, and studies on beam shape suggest greater energy harvesting when the shape favors deflection.
In this study, theoretical analyses are performed to investigate the characteristics of the static and dynamic stiffness of a nonlinear vibration isolator system. The vibration isolator system is modeled as an equivalent nonlinear oscillator. Based on the model, the static equilibrium and frequency response solutions are obtained with the variations of external static load and/or system parameters. It is shown that the static stiffness of the nonlinear vibration isolator tends to be hardened with the increase of external static load, which prevents the occurrence of excessively large deflection. This static stiffness-hardening effect is more remarkable with a larger spring constant ratio. The dynamic stiffness is also strengthened when the spring constant ratio increases, which enlarges the force transmissibility and reduces the isolation frequency bandwidth. Thus, the static stiffness- hardening improves the robustness of the nonlinear vibration isolator, whereas the dynamic stiffness-hardening rather degrades its performance. Thus, the opposite tendency of the static and dynamic stiffness-hardening effects should be considered in the design process of the nonlinear vibration isolator.
In this study, the frequency response analysis of a bistable electromagnetic vibration energy harvester is performed, based on an electromagnetic oscillator model, to investigate its nonlinear dynamic behaviors. The displacement and current responses are obtained, by the direct integration of the model, with the variations of mechanical and electromagnetic parameters. It is shown that the operating frequency band of the system can be broadened by the increase in mechanical parameters(inertial mass and Q-factor), but it does not depend significantly on any electromagnetic parameters(an external load resistance and the internal resistance of a coil). On the other hand, the output current of the energy harvester is affected only by the electromagnetic parameters (specifically, the sum of two resistances). Thus, the mechanical and electromagnetic parameters of the electromagnetic energy harvester must be designed properly, respectively, for broader and more efficient performance.
In this study, a bistable energy harvester (BEH) with a piecewise potential function is proposed to improve its energy harvesting performance. A mathematical model of the piecewise BEH (PWBEH) system is established first and a series of numerical simulation are performed, based on the developed model, in order to investigate the nonlinear dynamic behaviors and energy-harvesting performance of the system. The analysis results for the proposed PWBEH system are compared with a conventional BEH (CBEH). The frequency response results show the stiffness-softening interwell motion of the PWBEH, due to the piecewise potential energy function, which is contrary to the stiffness-hardening behavior of the CBEH. Such softening behavior of interwell motion tends to reduce the operating frequency of the BEH, while significantly increasing the output power. This observation indicate that the introduction of the piecewise potential function to a BEH would be beneficial to the system design for enhancing enegy-harvesting performance at the cost of redundant frequency band, which depends on the characteristics of environmental vibration sources.