In conventional construction practices, roof-parapet junction structures inevitably disrupt the insulation installation's continuity, leading to energy loss and thermal bridging. To address this issue, parapet thermal breaks were installed to interrupt the heat flow between the roof and the parapet, effectively preventing thermal bridging and energy loss and thereby reducing overall energy loss in buildings. This study equipped three experimental specimens with the developed parapet thermal breaks to verify their structural performance. These specimens were subjected to unidirectional loading under displacement-controlled conditions. The structural performance of these insulation structures was evaluated by comparing and analyzing the test results with corresponding analytical studies conducted using a finite element analysis program. In addition, five analytical models with varying parameters of the parapet thermal breaks were developed and compared against the baseline model. Consequently, the most efficient shape of the parapet thermal break was determined.
The precast concrete (PC) method allows for simple assembly and disassembly of structures; however, ensuring airtight connections is crucial to prevent energy loss and maintain optimal building performance. This study focuses on the analytical investigation of the shear capacity of precast ultra-high-performance concrete (UHPC) ribs combined with standard concrete PC cladding walls. Five specimens were tested under static loading conditions to evaluate their structural performance and the thermal behavior of the UHPC rib shear keys. Test results indicated that the specimens exhibited remarkable structural performance, with shear capacity approximately three times greater than that of standard concrete. Numerical models were subsequently developed to predict the shear capacity of the shear keys under various loading conditions. A comparison between the experimental results and finite element (FE) models showed a maximum strength difference of less than 10% and a rib displacement error of up to 1.76 mm. These findings demonstrated the efficiency of the FE model for the simulation of the behavior of structures.
This study aims to evaluate the structural safety of a structural thermal barrier, installed inside the structure of a building and performed the role of a load-bearing element and an insulation simultaneously, contributing to the realization of net-zero buildings. To ensure the reliability of the analysis model, the analysis results derived from LS-DYNA were compared with the experimental results. Based on the results shown through the flexural experiment, the reliability of the thermal cross-section insulation structure model for slabs was validated. In addition, the effect of the UHPC block on the load support performance and its contribution to vertical deflection was verified.
국제해사기구(IMO)는 어선 안전에 관한 최초의 국제 협약인 1977 어선안전을 위한 토레몰리노스 국제협약이 발효요건을 충족 하지 못함에 따라 이를 대체하는 1993 토레몰리노스 의정서를 채택하였다. 그러나 동 의정서 역시 현재까지 그 발효요건을 만족시키지 못함에 따라 발효되지 못하고 있는 실정이다. 이에 국제해사기구(IMO)는 동 의정서를 발효시킬 목적으로 의정서의 요건을 또 다시 완화하는 내용의 “1993 토레몰리노스 의정서 시행에 관한 협정(또는 총회 결의)”의 초안을 개발할 것을 해당 전문위원회인 복원성, 만재 흘수선, 어선안전 전문위원회(SLF)에 지시하였고 SLF는 제53차 회의(‘11.01)까지 그 초안 작업을 완료한 후 제27차 총회(’11.11)에서 이 를 채택할 계획으로 논의를 진행하고 있다. 따라서 이러한 국제적인 움직임에 대응하고 만약의 1993 의정서 발효에 대비하여 우리나라에 미치는 파급효과를 최소화하기 위한 활동의 일환으로써 본 연구는 그 동안 IMO에서 추진하여 왔던 1993 토레몰리노스 의정서의 발효를 위한 활동과 내용을 담고 있다.
본 연구에서는 카본시트튜브로 구속된 원형기둥에 반복 횡하중을 가하여 기둥의 휨내력을 평가하는 실험을 수행하였다 중립축을 기준으로 압축 및 인장측 단면의 모멘트를 이용하여 공칭모멘트를 계산하는 등가응력블록계산법을 소개하였다 또한 실험결과를 분석하여 횡 하중에 대한 거동을 예측할 수 있는 회귀식을 마련하여 실험결과와 비교하였다