탄소섬유관으로 구속된 원형 무근콘크리트 부재는 콘크리트에 효과적인 횡구속을 제공하며, 섬유의 우수한 역학적 성질로 인하여 기존의 철근을 대체할 수 있는 우수한 합성부재이다. 본 논문에서는 탄소섬유관으로 구속된 원형 무근콘크리트 보에 관한 실험 및 해석연구를 실시하였다. 실험연구에서 시험체는 두께 1.5mm(3장), 2.0mm(4장), 2.5mm(5장) 및 3.0mm(6장)를 변수로 하여 실험을 실시하였다. 구속된 콘크리트의 압축강도를 예측하는 식을 이용하여 본 연구에서는 탄소섬유 관으로 구속된 원형 무근 콘크리트 보의 휨성능을 예측하는 실험식을 제안하였다.
본 연구에서는 반복 횡하중을 받는 콘크리트충전 탄소섬유튜브기둥의 휨성능 평가실험을 수행하였다. 시험체의 단면형상은 각형과 원형이며 탄소삼유튜브의 두께 및 와인딩각도(winding angle)를 실험변수로 채택하였다. 모든 시험체는 건물의 한 층 높이와 유사한 높이를 갖는 full scale 크기로 제작되었으며 3대의 가력기(actuator)를 동시에 가동시켜 축하중과 횡하중을 가력하였다. 실험결과를 분석하여 기둥의 휨강도, 변형능력 및 에너지소산능력을 평가하였으며, 횡하중에 대한 기둥의 연성거동 또한 평가되었다.
본 논문에서는 탄소섬유관으로 구속된 무근 콘크리트 원형 및 각형 기둥에 대한 축하중 및 횡하중 재하 실험을 수행하고, 실험결과를 바탕으로 하여 몬테카를로 해석을 이용한 신뢰성 해석을 수행함으로써 탄소섬유관으로 구속된 무근 콘크리트 원형 및 각형 기둥과 탄소섬유관으로 구속된 철근 콘크리트 원형 및 각형 기둥의 두 가지 경우에 대한 강도저감계수를 예측하였다. 해석 결과, 무근의 경우에는 강도저감계수가 0.7로 예측되었고, 철근이 삽입된 경우에는 강도저감계수가 0.85로 예측 되었다. 이러한 계수값은 원형과 각형인 경우 모두 같은 계수값을 보여주었다.
반복 횡하중을 받는 콘트리트 충진 탄소섬유 튜브 기둥의 휨거동을 분석하기 위하여 실험을 수행하였다. 콘크리트 충진 각형 탄소섬유 튜부 기둥의 휨거동에 영향을 미치는 탄소섬유의 와인딩 각도와 두께를 변수로 선택하여 거동을 평가하였다. 콘트리트 충진 탄소섬유 튜브 기둥의 휨거동 보다 정확하게 분석하기 위하여 설정된 두 변수를 동시에 고려하였다. 실험의 결과에서 얻어진 하중-변형 곡선을 이용하여 콘크리트 충진 각형 탄소섬유 튜브 기둥이 휨강도, 변형능력 및 에너지 소산능력을 조사하였다. 또한 기존 구조물과의 비교를 위하여 철근콘크리트 조적벽과 콘크리트를 충진한 각형 탄소섬유 튜브 기둥과의 연성 능력을 비교 평가하였다.
반복 횡하중을 받는 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동을 분석하기 위하여 여섯 개의 시험체에 대한 실험을 수행하였다. 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동에 영향을 미치는 탄소섬유의 와인딩 각도와 두께를 변수로 선택하여 거동을 평가하였다. 콘크리트 충진 탄소섬유 튜브 기둥의 휨 거동을 보다 정확하게 분석하기 위하여 설정된 두 변수를 동시에 고려하였다. 실험의 결과에서 얻어진 하중-변형 곡선을 이용하여 콘크리트 충진 탄소섬유 튜브 기둥의 휨강도, 변형능력 및 에너지 소산능력을 조사하였다. 또한 기존 구조물과의 비교를 위하여 철근콘크리트 조적벽과 콘크리트를 충진한 탄소섬유 튜브 기둥과의 연성 능력을 비교 평가하였다.
주상복합건물의 구조시스템은 휨변형에 의해 횡력에 저항하는 전단벽 구조와 전단변형에 의해 저항하는 라멘구조의 복합구조로 이루어져 있으며, 이 두 구조의 원활한 힘의 전달을 위하여 전이층에 주로 춤이 큰 보를 사용한다. 주상복합건물은 이러한 큰 질량과 강성을 갖는 전이층으로 인하여 유한요소법에 의한 해석 시 동적 해석을 수행하여야 하며, 일반적인 해석 절차로는 해결하기 어려운 많은 문제점을 야기한다. 일반적으로 주상복한건물의 해석시 전이층 바닥판은 강막을 적용하거나 판요소로 직접 입력하나 적절한 평가없이 사용되고 있다. 따라서 본 연구에서는 강막 적용에 따른 영향을 평가하여 올바른 해석 방법을 제시한다.
탄소섬유튜브는 기존의 콘크리트 기둥에 강도와 연성을 제공하여 길이방향 및 횡방향 철근을 대신할 수 있다. 본 연구에서는 탄소섬유튜브에 의해 구속된 각형 콘크리트의 축하중에 대한 실험 및 해석적 연구를 수행하였다. 탄소섬유튜브는 길이방향에 대하여 90^{\circ}\pm30^{\circ}, 90^{\circ}\pm45^{\circ}로 섬유의 방향을 조합하여 필라멘트 와인딩 방법으로 제작하였다. 10,000kN UTM을 이용하여 단조축하중을 재하하였다. 섬유의 방향, 튜브의 두께에 따른 횡구속된 콘크리트 기둥의 응력-변형률 관계를 고찰하였다. 탄소섬유튜브에 의해 횡구속된 콘크리트의 압축강도와 연성을 예측하기 위하여 제안된 실험식은 실험결과를 적절히 예측하는 것으로 나타났다.
상부 벽식, 하부 골조로 이루어진 주상복합 건물은 주어진 대지 내에 여러 기능을 수용하기 위한 건물의 구조로서 대도시에서는 광범위하게 사용되고 있다. 그러나 이러한 전이보 시스템은 구조시스템의 수직적 불연속성으로 인하여 많은 문제점을 가지고 있다. 본 연구에서는 현재 일반적으로 주상복합건물에 사용중인 춤이 깊은 전이보를 가진 구조시스템을 조사하고 아치 시스템으로 대체하기 위하여 기존의 전이보를 사용하였을 경우 발생하는 아치거동의 형태를 규정하고 이를 아치의 형태로 나타내어 전이보 시스템을 대체하였다. 전이보 시스템을 대체한 보다 효율적인 아치 시스템에 대한 여러 가지 고찰을 통해 아치 시스템의 적용성 여부를 판단하고, 이 시스템과 기존의 전이보 시스템을 중력방향 하중과 횡 방향 하중에 대하여 비교하였다. 전이보 시스템과 아치 시스템을 중력방향 하중과 횡 방향 하중에 대해 비교한 결과, 전이보 시스템이 가지고 있는 구조적인 문제점을 많이 감소시킬 수 있었다. 전이보 시스템을 대체할 아치 시스템은 아치 작용으로 인해 발생하는 전이보의 전단 거동에 대한 불확실성, 전이보 자체의 큰 강성으로 인하여 기둥 부분에 발생하는 추가 모멘트 벽 하단부에 발생하는 전단 응력 집중 현상 및 벽 하부 중앙과 전이보 중앙부의 비효율성 등과 같은 문제점을 감소시킬 수 있는 효율적인 시스템으로 판단된다.
본 연구의 목적은 지진에 의한 비보강 조적조의 거동을 평가하는 것이다. 효율적인 평가를 위하여 유사동적해석법을 사용하였다. 저층의 비보강 조적조에 대하여 지진하중에 의한 지반-구조물의 상호작용에 따른 영향을 평가하기 위하여 단단한 지반에 놓여진 구조물과 연약한 지반에 좋여진 구조물을 비교하였다. 그 결과 연약한 지반위에 놓인 구조물의 층 전단력과 밑면 전단력이 상대적으로 증가하는 것으로 나타났다. 또한 현재 사용되고 있는 내진기준에 주어진 약산식에 따라 해석을 수행할 경우 연약한 지반에 놓인 건물이 경우 전단력을 과소평가 할 수 있는 것으로 나타났다.
본 논문은 국내의 비보강 조적조에 대해 내진성능을 조사하기 위하여 재료측성 평가를 위한 실험연구를 수행하였다. 실험결과를 바탕으로 조적용 모르터의 압축강도식을 제안하였다. 또한 조적용 모르터의 배합비에 따른 조적조 프리즘의 압축강도 특성을 비교하였다. 조적조 프리즘의 압축강도로써 조적조의 탄성계수를 구할 수 있는 약산식을 제시하였으며, 약산식을 사인장 조적조 실험을 통하여 구한 전단탄성계수값과 비교하여 볼 때 타당성을 가지고 있다고 판단된다. 실험결과로써 나온 재료특성 값을 바탕으로 2층 조적조 다세대 주택에 대한 유사동적해석을 수행하였다. 해석결과로 얻은 전단응력과 전단파괴가 나타난 사인장 조적조의 허용전단응력은 유사한 것으로 확인되었다.
상부 벽체와 하부 골조로 구성되는 주상복합건물은 전이층에서 수직적인 강성과 강도의 불연속성을 갖는다. 이러한 복합구조는 전이층에서 춤이 큰 보에 의하여 하중이 전달되면 설계시 매우 중요하게 고려하여야 하는 사항이다. 그러나 이에 대한 연구가 충분히 이루어져 있지 않으며 실제 전이보의 설계시 춤을 매우 크게 하여 요구되는 강도보다 큰 안전율이 고려되고 있다. 본 연구에서는 전이층의 단순화모델을 이용하여 보의 높이 및 지지면의 길이에 따른 아치거동의 변화를 조사하였다. 유한요소법을 이용하여 구조물을 분석하고 두 변수를 포함하는 헌치부재를 이용하여 그 효과를 기존 시스템과 비교하였다. 중요 변수와 헌치의 기울기는 1:1의 비율에서 사장 효율이 좋은 것으로 나타났으며, 이러한 결과를 전이보를 대신하여 사용한 결과 중력방향의 상부 아치거동에 대하여 효과적으로 작용하는 것으로 나타났다. 또한 응력 집중부위에서의 응력 감소와 깊이 전이보의 높이감소에 효과적으로 작용하는 것으로 나타났다.
한 cycle 의 이력곡선 loop을 완전히 표현하기 위해서는 pinch force, drift offset, effective stiffness,
따ùoading, reloading, tangential stiffness 둥의 변수가 펼요하게 된다. 각 이력 loop에 대해 이들 변수들은
에너지 소산정도에 따라 변위와 축력의 함수로 표현될 수 있다. 본 논문에서는 먼저 16개의 전단벽 실험에서
얻어진 이력곡선 데이타를 분석하여 앞에 기술된 모든변수를 표준화된 변위(ð./ð.y) 의 함수로 표현했으며 이
를 바탕으로 이력콕선의 포락선으로 표현되는 힘-변위관계를 예측할 수 있는 6개의 step올 제시하였다. 제시
된 기볍으로 구해진 비탄성 힘 변위관계는 실험곡선과 비교되었으며 내진설계에 있어서 가장 중요한 요소중
하나인 구조물의 비탄성 힘-변위관계를 예측하는 편리한 기법으로 이용될 수 있음을 보였다.
고무받침동을 이용한 기초분리공볍 은 상부구조윤의 고유주기를 기초분리가 되지 않은 구조불보 다 길게 하
여줌으로써 지진에 의해서 발생하는 밑면 전단력을 감소시키 는 원리플 이용하고 있다. 이 원리 는 지진 지역에
있는 일반 건물구조물에 세계각국 에서 성공적으로 사용되고 있으며, 특히 교량구조물 에도 그 역할 이 입 증되
어 미국, 일 본 퉁을 증심으로 적용이 급증하고 있다. 본 논문은 동열한 원리 를 우리나라에서 건설되고 있는 원
전구조물에 적용하여 기초분리된 원전 격납구조괄의 시동 윷 고찰하고 자 한다 이와 같은 지동해석을 실시하
는 데 있어서 , 시간영역 해석 은 않은 시간과 정비괄 요 하게 되어 현실 적으로 사용하기에 여러 어려움이 존재하
게 되는데 반해 , 주파수영 역 해석 은 이버한 단점을 극복하게 되어 실용적이며 효과적 인 결과를 제공하게 된
다 즉, 입력 지진파에 의한 기초분 랴 원 전 격납구조뀔 의 가 동을 예측함에 있어서 시스템 복소주파 응답함수
및 지진파의 파워스펙트럼 계산윤 몽 하여 보다 합리직인 접끈이 가능함을 보이고자 한다.
This paper introduce a calculation method for the length of steel and rebar due to load onto the member in large scale structure using precast composite structure system. As result, cost effectiveness of members in large scale structure is procurable by utilizing steel and rebar economically.
As the weight is increased by the quantity and size of the members in large scale structures, precast column-beam joints should be designed in consideration of the assembly process. This paper was presented a way to reflect the construction difficulty such as interference of rebar at the end of beam when you design rebar joints and calculation of the length of the embedded steel.
This paper introduce a reinforcement method for vertical extension of a building using a rahmen frame structural system. This approach has to be carried out by considering the structural safety due to the additional weights being exerted to the pre-existing building. The connections to fasten both the rahmen frames and original building were designed with the axial loads and moments acting on the rahmen frame structural system, that is extended vertically. This system reduces the structure self-weight and ensures non-additional of reinforcement.
The tendon loss of the pre-stressed composite member is affected immediate elastic loss and time-dependent loss. For the efficient and safe pre-stressed member design, precision calculation method is required. In this paper, experimental study and comparison analysis is conducted by measuring of tendon loss. Later, the experimental investigation would be conduct to make an estimate method of tendon loss considering effects between steel and reinforced concrete.