위상최적설계는 개념설계에 적합하며, 제품의 설계에서 사용되어지고 있다. 전통적인 위상최적화는 균질화법과 최적조건법을 사용해 왔다. 균질화법은 구멍으로 구성된 구조물과 강성행렬사이의 관계를 연결해주는데 사용되며, 최적조건법은 부피분율을 유지하며 설계변수의 개선에 사용되어진다. 전통적인 위상최적설계는 수렴성이 좋은 장점은 있지만 수렴시간이 많이 걸린다는 단점이 있었다. 이 문제를 해결하는 하나의 방법으로 평균 응력량을 기준으로 요소를 제거하는 요소제거법을 제시하였다. 예제에서 수렴속도가 향상됨을 알 수 있었다.
파양한 구조물의 정적해석에서 매트릭스구조해석법은 가상 폭넓게 사용되고 있는 강력한 해석기법이다. 그러나 이 방법으로 많은 수의 자유도를 갖는 구조물을 정확히 해석하기 위해서는 많은 계산 메모리와 빠른 처리 능력을 갖춘 고성능 컴퓨터를 필요로하는 취약점이 있다. 따라서 매트릭스구조해석법으로 많은 수의 자유노를 갖는 구조물을 퍼스널 컴퓨터 상에서 정확히 해석하기에는 곤란한 경우가 많다. 매트릭스구조해석법치 이러한 취약점을 극복하기 위하여, 저자들은 전달강성계수법을 제안한다. 전달강성계수법은 해석대상 구조물에 대한 강성계수의 전달에 기본 개념을 두고 있으am로 퍼스널 컴퓨터에 매우 적합한 해석기법이다. 본 논문에서는 골조추조물에 대한 정적해석 알고리듬을 전달강성계수법으로 정식화한다. 그리고 전달강성계수법, NASTRAN, 매트릭스구조해석법 그리고 해석해에 의한 계산 결과들의 비교를 통해 전달강성계수법의 유효성을 확인한다.
주상복합건물의 구조시스템은 휨변형에 의해 횡력에 저항하는 전단벽 구조와 전단변형에 의해 저항하는 라멘구조의 복합구조로 이루어져 있으며, 이 두 구조의 원활한 힘의 전달을 위하여 전이층에 주로 춤이 큰 보를 사용한다. 주상복합건물은 이러한 큰 질량과 강성을 갖는 전이층으로 인하여 유한요소법에 의한 해석 시 동적 해석을 수행하여야 하며, 일반적인 해석 절차로는 해결하기 어려운 많은 문제점을 야기한다. 일반적으로 주상복한건물의 해석시 전이층 바닥판은 강막을 적용하거나 판요소로 직접 입력하나 적절한 평가없이 사용되고 있다. 따라서 본 연구에서는 강막 적용에 따른 영향을 평가하여 올바른 해석 방법을 제시한다.
본 논문에서는 2차원 사각탱크내 비압축성, 비점성, 비회전 유동에 대한 비선형 슬로실 해석을 다룬다. 유체영역의 지배방정식으로 포텐셜 이론에 기반을 둔 라플라스 방정식을 사용한다. 대변형의 슬로싱 거동을 표현하기 위하여 베르누이 방정식으로부터 유도된 운동 및 동역학적 자유표면 경계조건을 적용한다. 이러한 비선형 슬로싱 문제는 9결점 요소를 사용한 유한요소법에 의하여 해석되어 진다. 경계조건에 대한 시간적분과 정확한 속도계산을 위하여 각각 예측자-수정자 기법 및 최소자승법을 도입하였다. 또한, 자유표면 추적에서 야기되는 안정성 문제는 시간변동에 대한 자유표면 위치를 직접 계산함으로써 확보할 수 있었다. 외부 조화가진에 대한 본 논문의 결과는 선형이론해 또는 참고문헌의 결과와 비교하여 매우 정확하고 안정적이었다. 프로그램 검증 후, 유체높이와 가진크기에 대한 슬로싱 응답특성을 분석하였다.
본 논문은 콘크리트 균열방향의 회전 및 철근의 항복에 따른 2차원 R/C 구조물의 극한거동 덴 한계상태설계에 관한 연구를 다룬 것으로, 유한요소모델에 적용하여 비선형 해석 및 한계상태설계가 가능한 수치 해석 및 설계 알고리즘을 소개하였다. 철근의 설계를 위하여, 각 유한요소의 극한거동에 기초한 한계상태설계방정식이 유한요소 알고리즘에 도입되었다. 한편, 하중에 따른 콘크리트 균열방향의 회전 및 철근의 항복을 고려한 2차원 R/C 평면요소의 단순화된 실용적 비선형 응력-변형률 거동의 구성관계모델을 제시하여 비선형 유한요소해석 알고리즘을 구성하였다 제시된 해석 모델을 R/C 전단벽의 실험모델과 비교하여 검증하도록 하였으며, R/C 전단벽에 대한 설계 예를 통하여, 각각의 유한요소에서 얻어진 설계 철근비를 한계상태설계방정식으로부터 산정하였다.
탄소섬유쉬트는 경량, 고강도, 우수한 내식성, 그리고 간편한 시공성 때문에 많은 종류의 철근콘크리트 부재의 보강에 사용되고 있다. 그러나 탄소섬유쉬트에 의해 보강된 철근콘크리트 부재의 파괴거동은 탄소섬유쉬트와 콘크리트 표면의 부착특성에 따라 크게 달라진다. 본 연구에서는 탄소섬유쉬트와 콘크리트 사이의 경계면에 링크요소를 이용함으로써 탄소섬유쉬트와 콘크리트 사이의 부착거동의 변화를 고려한 부착응력-미끄럼 모델을 제안하였다. 또한 이 방법의 유효성을 알아보기 위하여 탄소섬유쉬트로 보강된 철근콘크리트 보의 파괴거동에 대한 해석을 실시하여 실험결과와 비교하였다. 그 결과 본 연구에서 제안된 모델을 이용한 해석결과는 실험결과와 비교적 잘 일치함을 알 수 있었다.
본 연구를 통하여 다하중 경우를 가지는 평면구조물의 위상을 도출하기 위한 최적화 프로그램을 개발하였다. 계산시간을 줄이고 실용적인 위상최적화를 수행하기 위하여 사절점 저차 유한요소를 이용하였다. 저차 유한요소를 사용하여 도출되는 위상에 나타나는 체크무늬현상을 제거하기 위해 여과절차를 도입하였다. 위상최적화를 수행하기 위하여 가등질화된 물질로 구조재를 표현하였고 물질을 재분배하기 위하여 최적정기준을 바탕으로 유도한 크기조절 알고리듬을 도입하였다. 개발된 프로그램을 이용하여 단하중 경우와 다하중 경우에 대한 평면 구조물의 위상을 도출하고 이를 비교분석하였다. 본 연구를 통하여 구조물의 실제적인 위상을 도출하기 위해서는 다하중 경우가 반드시 고려되어야 하는 것으로 나타났다.
최근 들어 심해역에 대한 개발과 합섬섬유 재질 케이블의 발달로 인하여 저장력 케이블의 사용이 증가되었다. 저장력 케이블은 장력에 의한 복원력이 작기 때문에 대변위가 발생하게 되며, 따라서 기하학적 비선형이 강하게 나타나게 된다. 또한 해양환경에서는 유체 비선형도 작용하게 된다. 본 연구에서는 수치해석적 방법을 통하여 불균일하게 구성된 예인되는 저장력 케이블의 3차원 동적거동 해석을 수행한다. 수치해석에서는 유체 및 기하학적 비선형과 굽힘강성이 고려되며, 유한차분법(음해법)을 적용하여 풀이된다. 비선형 해를 구하기 위해서 뉴톤-랍슨 방법을 사용한다. 대형 행렬을 풀이하기 위하여 불록삼중대각행렬 풀이법이 적용되는데, 이 방법은 일반적인 행렬 풀이법인 가우스-조르단 방법에 비하여 계산시간을 상당히 줄일 수 있었다. 선배열 음탐 케이블에 대한 다양한 예제해석을 수행하였으며, 해석결과는 미국 우즈홀 해양연구소에서 개발된 프로그램 결과와 잘 일치하였다.
비행체의 선회운동 시 액체연료 저장탱크의 동응답을 ALE(arbitrary Lagrangian-Eulerian) 유한요소법을 이용하여 해석하였다. 연료탱크는 선회운동 시 내부 연료의 관성력에 의해 상당한 양의 충격하중을 받게 된다. 또한 이로 인해 유발된 큰 동 하중과 모멘트는 구조물의 안정성과 제어시스템에 영향을 미친다. 본 논문에서는 내부연료의 동적 영향력을 억제하기 위하여 링형배플을 채용하였다. 배플개수와 배플위치에 따른 연료탱크의 파라메트릭 해석을 통하여 연료탱크의 동응답 특성에 미치는 배플의 영향을 분석하였다. 유체와 구조물 사이의 연계는 ALE 유한요소법을 통하여 정확하고 효과적으로 처리되었다.
연속적으로 이루어지는 제작ㆍ조립 단계에서 변위하중을 받는 CRTS 반사판의 초기 정적평형상태론 결정하기 위하여 변위증분법을 사용하여 기하학적 비선형 유한요소 해석기법을 제시하고 반사반의 이상적인 형상파 실 제자 형상과의 차이, 즉 형상오차에 케이블 및 구조적 인자가 미치는 영향에 관한 연구를 수행한다. 본 연구 결과는 Galerkin method 와 NASS 98 Program을 사용하여 해석한 결과와 비교ㆍ검증하여 그 타당성을 입증한다.
본 논문은 사각형 연료 탱크 내 비점성, 비압축성, 비회전 유동에 대한 슬로싱 주파수 응답의 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 슬로싱 운동이 작다고 가정하여 선형화된 자유표면 조건을 적용하였고, 변수분리기법을 이용하여 이론해를 구하였다. 점성 감쇠에 따른- 에너지 소산의 영향을 구현하기 위해 가상치 점성 계수를 도입하였으며, 이고 인해 공진 주파수에서 응답의 발산을 방지할 수 있나. 슬로싱 응답의 최대 진폭을 예측하기 위해 9절점 요소를 사용한 유한요소법을 이용하여 해석하였다. 슬로싱 높이, 유체 내부 동수압 및 내부 유체력의 수치 결과는 이론해와 잘 일치하였다. 유한요소 시험 프로그램을 검증한 후, 유체높이에 따른 슬로싱 주파수 응답 특성을 분석하였다.
승용차의 휠은 타이어와 차체 무게를 지지하며, 회전력과 정지력을 노면으로 전달한다. 휠의 경량화는 차량의 연료효율에 효과적이므로, 스틸휠이 무게를 최소화하도록 디스크 홀이 형상을 최적화 하였다. 설계모델은 Pro/ENGINEER를 사용하여 설정하고, 설계모델의 해석은 ANSYS를 이용하였다. 범용 소프트웨어간의 직접적인 자료의 전달이 어려우므로 두 프로그램을 병합 사용하기 위해, 반응표면법을 이용한 근사함수를 구하였다. 5수준의 요인배치법의 실험값을 사용하여 최대응력과 최대 변위를 추출하였다. 초기 모델은 14인치 승용차용 스틸휠을 사용하였고, 디스크 홀의 폭을 설계변수로 선택하였다. 순차이차계획법과 활성화제약조건을 사용하는 PLBA(Pahenichny-Lim-Belegundu-Arora) 알고르즘을 이용하여 최적해를 구하였다.