본 논문에서는 원심식 대형 압축기 구동용 모터 베이스 프레임의 구조해석 및 콘크리트 타설에 따른 구조안전성 평가를 수행하였다. 먼저 모터 베이스 프레임에 적용되는 네 가지 하중조건에 따른 구조해석을 진행하고 최대 비틀림 에너지 이론 및 Mohr-Coulomb 이론을 통하여 구조안전성을 평가하였다. 구조해석 결과에서 취약한 구조안전성을 나타낸 연결부 등의 불연속적인 부분에서 발생하는 국부응력에 대하여 ASME VIII Div. 2에 따른 구조안전성 평가를 적용함으로써 좀 더 합리적으로 구조안전성 평가를 수행할 수 있었다. 또한, 모터 베이스 프레임 내부에 콘크리트 타설 및 미타설에 따른 구조해석 및 ASME 구조안전성 평가를 통하여 모터 베이스 프레임의 구조안전성을 정량적으로 비교하여 콘크리트 타설로 인한 구조 안전성의 향상을 확인하였다.
고층빌딩이나 해양 라이저와 같은 세장 구조물은 구조시스템의 동적 불안정의 주요 원인인 와류유기진동(vortexinduced vibration, VIV)에 의한 동하중에 매우 취약하다. 와류유기진동이 라이저의 고유진동수 영역에서 발생하는 경우 Lock-in현상으로 피로파괴의 우려가 있다. 본 논문에서는 Lock-in 영역에서 구조물과 유동의 동적거동에 대한 수치해석을 다루었으며, 유동조건 변화에도 불구하고 공진 주파수가 유지되는 현상에 대해 분석하였으며, 유입유동에 대해 수직방향으로 자유진동하는 1자유도의 2차원 원형실린더 단면에 대한 비정상 층류를 가정하였다. 각 시간 단계에서 물체의 움직임을 고려하여 유동장 격자를 재생성하며 비정상 유동과 물체의 운동에 대한 지배방정식을 순차적으로 수치해석하여 유체-구조연성해석을 수행하였다. 결과는 선행연구와 잘 일치함을 보여주었고, Lock-in 현상에 대한 특성을 잘 나타내었다. Lock-in 영역에서는 양력뿐만 아니라 항력도 크게 증가함을 보여주었으며, 실린더의 수직변위는 직경의 20%까지 이름을 나타내었다. 양력과 수직변위의 상관분석을 통해 실린더가 Lock-in 영역에서 양력과 수직변위의 위상차가 동기로부터 반동기로 천이함을 확인하였으며, 이러한 변화가 Lock-in 영역에서 나타나는 공진거동의 원인이 되는 것으로 판된되었다.
일반적으로 건축물의 구조해석과 설계에 있어 작업효율을 확보하기 위하여 상부구조물과 하부구조물을 별도로 모델링하여 해석 및 설계를 진행하는 분리해석 방법을 사용한다. 하지만, 상기 분리해석을 사용할 경우, 상부구조물의 고정지점과 변형된 기초구조물과는 실제 연결된 지점에서 변위차가 발생하여 구조해석의 기본요건인 변형적합성 조건을 만족하지 못하게 되고 상부구조-하부구조의 상호작용을 고려하지 못하기 때문에 실제와는 다른 구조해석 및 설계결과를 초래할 수 있다. 본 연구에서는 초고층 철골구조물을 대상으로 구조물의 부등침하 등에 큰 영향을 미치는 상재(常載)하중에 대한 분리해석과 일체해석의 해석결과 차이를 비교 분석하였다. 분석결과에 따르면 분리해석방법을 사용할 경우, 상부구조물의 구조해석에 있어 기초의 변형을 고려하지 못하기 때문에 부재력을 과소평가할 수 있고 이로인해 비안전측 설계결과를 가지고 올 수 있다. 하부 기초구조물을 분리해석으로 해석하였을 경우, 상부구조물의 강성을 고려하지 못하기 때문에 기초의 부등침하 과대평가, 부재력의 과대/과소 평가를 초래할 수 있어 비경제적이고 불안전한 설계결과를 가져올 수 있다. 특히, 기초의 변형이 상부구조물에 큰 영향을 미칠 수 있는 건축구조물, 지반의 강성이 작아서 기초에 큰 변형이 예상되는 건축물, 지반조건이 불균질하여 부등침하가 예상되는 건축구조물 등에는 분리해석을 지양해야 할 것이다.
러그는 선박 및 해양구조물의 블록을 이동하거나 반전에 많이 사용되는 부품이다. 선박이나 해양구조물의 제작기술이 발전함에 따라 블록이 점차 대형화되고 있어, 생산성 향상을 위해 블록을 보다 효율적으로 다루는 기술에 대한 중요성이 대두되고 있다. 러그 구조의 안전하고 경제적인 설계를 위하여 비선형 구조해석 결과를 토대로 도출한 최종강도를 기준으로 한보다 합리적인 설계과정이 필요하다. 본 연구는 조선소에서 자주 사용하는 T형 러그의 최적 구조설계를 다루고 있다. 본 연구에서의 T형 러그에 대한 최적 구조설계 결과는 충분한 구조적 안전성이 보장될 것으로 판단되고, 러그 용량별 최적 구조설계 결과의 중량 감소량에 어떤 규칙성을 발견할 수 없었는데, 이는, 현재의 설계과정에 대한 검토가 필요한 것으로 생각된다. 여기에서 제시한 비선형 구조해석에 기초한 최적 구조설계 과정은 향후 보다 다양한 경우의 러그 설계에 적용될 수 있을 것이다.
본 연구는 2.5MW급 풍력발전기용 기어박스의 동특성 분석에 관한 것으로서, 유연핀(flexible pin) 채용에 따른 유성기어축의 미스얼라인먼트(misalignment) 개선여부와 충격하중에 따른 기어박스의 동응답 특성을 유한요소해석을 통해 고찰하였다. 내부의 복잡한 기어시스템의 하중전달을 정확하게 그리고 효과적으로 반영하기 위해 치접촉을 등가 치강성계수를 갖는 스프링요소와 물림률을 이용하여 모델링하였다. 기어의 등가 치강성계수는 기어치에 대한 변형해석을 통해 계산하였으며, 동특성 분석을 위해 기어박스 입력단에 충격 토오크를 부과하였다. 수치실험을 통해 등가 치강성모델의 타당성을 검증하였으며, 양단 그리고 일단 고정축과의 상대 비교를 통해 유연핀 적용에 따른 유성기어축의 미스얼라인먼트 개선여부를 확인할 수 있었다.
자전거의 안장 지주에 영구자석의 척력을 이용하여 완충장치를 설치하고자 자기 해석용 상용프로그램을 이용하였다. 유한요소법으로 구한 해석치를 실험치와 비교하여 유한요소 해석치의 신뢰성을 확보하였다. 그 후에 3 자유도계의 자전거 동역학 모델을 완성하고 자석의 크기에 상응하는 등가 스프링 강성값을 모델에 이식하였다. 자전거의 동역학 모델에서 전륜과 후륜은 주행면의 비평탄도에 의한 입력을 부담하도록 하였다. 전륜과 후륜이 독립적으로, 또는 동시에 반삼각 범프(halftriangular bump)와 정현파 굴곡로(sinusoidal road)를 통과할 때의 동적 거동을 살펴보았다. 운전자와 프레임의 수직거동, 주행방향의 피칭 거동을 관찰하였으며 자전거의 완충 시스템을 보다 구체화할 수 있는 기반을 마련하였다.
본 연구는 NO96 화물창의 BOG(boil off gas), BOR(boil off rate)을 감소시키기 위한 노력으로 단열재료 및 단열층을 변화시켜서 개발된 NO96-GW, NO96-L03의 방열구조에 대해서 BOG, BOR 값을 계산하고 단열성능을 비교․평가하였다. 두 가지의 변형된 NO96 모델을 기존의 NO96 방열과 단열층 및 단열재료의 차이점을 비교하고, 각각의 열저항 및 BOG/BOR 값의 비교 결과를 제시하였다. 열저항 값은 유한요소해석법을 이용하여 계산되었으며, 준정적 열평형 상태를 가정하여 열유속과 온도분포를 통하여 단열성능을 비교하였다. 계산에 사용된 화물창의 모든 재료물성치는 온도 의존값으로서 반영하여 -163oC에서의 극저온 상태에서 특성을 반영되었다. 각 화물창의 BOG, BOR 계산은 국부 열전달 해석을 통해 방열판에서 발생하는 열유속을 계산하고, 등가모델을 적용하여 계산하는 과정으로 수행되었으며, 그 결과를 각 화물창의 단열성능을 비교평가하기 위해서 검토하였다.
복합재는 높은 비강도와 비강성을 가지고 있어 자동차, 항공기 등 전반적인 산업분야에서 널리 사용되는 재료이다. 우주선의 노즐 부분과 같이 높은 온도뿐만 아니라 높은 압력이 작용하는 환경에서 사용하기 위한 재료로 복합재가 필요하다. 복합재의 물성치를 아는 것은 매우 중요한데 모재(matrix)와 강화섬유(fiber) 각각의 물성치를 수치적으로 대입해 얻는 결과는 실험값과의 오차가 커 예측하는데 있어 더 정확한 방법이 필요할 것이다. 본 연구에서는 유한요소법을 이용한 EDISON용 CASAD solver 프로그램을 활용해 분석하였다. matrix와 fiber의 물성치를 대입해 복합재의 물성치를 구해 실험으로 측정된 물성치, 경험식으로 계산된 물성치와 비교를 하였다.
본 논문에서는 폭발해석에서 주로 사용되는 폭발하중의 압력-시간 이력곡선과 폭발하중 산정식인 Conwep 모델을 소개하고, 이를 더욱 간편하게 계산할 수 있는 간략 폭발하중 산정식을 제안한다. 폭발해석에서 폭발하중은 일반적으로 압력-시간 이력곡선의 형태로 적용되며, 그에 대한 주요 값들은 폭발하중 산정식에 의해 계산된다. 대부분의 폭발해석에서 사용되는 폭발하중 산정식인 Conwep 모델은 환산거리(scaled distance)를 핵심변수로 하여 계산되는데, 그 계산 과정이 매우 복잡한 단점이 있다. 따라서 본 논문에서는 환산거리를 변수로 갖는 간략한 유리식을 사용하여 주요 값들을 계산하고, 단순화된 압력-시간 이력곡선으로 폭발하중을 산정할 수 있도록 제안하였다. 간략식을 찾는 과정에서 Conwep 모델의 계산 결과를 바탕으로 곡선 적합(curve fitting) 방식이 사용되었으며, 제안된 간략식에 의한 주요 값의 계산 결과는 Conwep 모델과 비교하여 1% 미만의 오차를 갖는다. 또한, 유한요소를 이용한 폭발해석에 적용하였으며 Conwep 모델을 적용한 결과와 비교를 통해 검증하였다.
선박 및 플랜트의 배관은 제작부터 설치까지 일련의 과정을 모두 현장에서 하는 것이 아닌, 외부의 공장 또는 숍으로부터 배관의 제일 작은 요소인 스풀 배관을 제작하고, 이를 작업현장 또는 현장 근처의 공장에서 모듈화 또는 가설치 작업 및 현장에서 직접 설치작업을 통해 제작이 된다. 이 과정에서 스풀은 3D CAD를 기반으로 하는 것이 아닌 2D 도면을 기반으로 하기 때문에, 작업공간을 고려하지 못할 수 있다. 이러한 이유로 실제 설치작업 시 작업공간의 방해로 인한 공기의 지연을 발생 시킬 수 있다. 본 논문은 이러한 스풀 배관의 설치 시 또는 운용 및 유지보수 시에 생길 수 있는 외부 구조물과의 스풀 위치에 관하여, 스풀 위치가 외부 구조물로부터 방해를 받지 않도록 하기 위한 방법으로 유전 알고리즘을 적용하여 스풀 위치를 결정하는 방법에 대해 제시하고자 한다.
본 논문에서는 범용유한요소해석 프로그램인 ABAQUS를 사용하여 국내에서 사용되는 콘크리트벽돌을 조적채움벽으로 가진 철근콘크리트 골조를 대상으로 유한요소해석을 실시하였다. 해석대상은 순수골조, 채움벽의 두께가 0.5B인 골조, 두께가 1.0B인 골조의 3종류이다. 철근콘크리트 골조 및 채움벽의 재료특성은 재료시험 결과로부터 구하였으나 두께가 1.0B인 채움벽의 경우 벽돌의 쌓기방법의 차이에 의해 0.5B 두께의 실험체보다 4배 정도 증가된 인장강도를 사용하였다. 유한요소해석결과는 실험을 통해 구한 하중-변위관계 및 변위각에 따른 균열양상을 상당히 정확하게 예측하였다. 유한요소해석 결과의 분석을 통해 조적채움벽과 골조사이의 접촉응력 및 골조의 전단력과 휨모멘트를 산정하였다.
본 논문에서는 변위응답 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 180° 나선형(Helical 180°) 초고층건물을 대상으로 풍진동실험을 수행하여 나선형 초고층건물의 공력불안정 진동 특성 및 공력감쇠 특성을 조사하였고, 정방형 초고층 건물의 결과와 비교분석 하였다. 본 연구에서의 공력감쇠율은 RD법(random decrement technique)을 이용하여 평가하였다. RD법에 의해 평가된 공력감쇠율은 기존문헌 및 준정상가정이론 결과와 비교·검증하였다. 실험결과, 공력진동 실험결과 180° 나선형모형의 풍직각방향에 대한 공력불안정 진동은 발생하지 않는 것이 확인되었다. 정방형과 180° 나선형 형상에 대한 공력감쇠율을 살펴보면, X방향에 대한 공력감쇠율은 무차원 풍속이 증가와 비례하여 점진적으로 증가하는 경향이 나타났다. 반면, Y방향에 대한 공력감쇠율은 정방형모형과 매우 다른 양상이 나타나는 것을 알 수 있었다.