본 논문에서는 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동을 분석하였다. 기본적인 폭발하중을 받는 패널 실험 데이터, 축하중과 폭발하중을 받는 철근콘크리트 기둥 실험데이터를 이용하여 비선형 동적해석 모델링을 검증하였다. 축하중의 적용에 있어서 Autodyn은 동적해석만을 위한 프로그램이기 때문에 축하중과 같은 정적 하중에 대한 초기 응력 상태를 모사하는 해석 절차를 제시하였다. 축하중비 0%~70% 구간과 TNT 등가량에 의존한 환산거리 1.1~2.0에 해당하는 매개변수를 선정하여 총 80개의 비선형 동적 유한요소해석을 진행하였다. 축하중비와 환산거리의 변화를 통해 손상정도와 최대 변위 및 회전각으로 구조 거동을 비 교 분석한 결과로 원거리 폭발하중에서 축하중을 받는 기둥의 강성 증가로 최대 변위가 감소한다. 결과적으로 축하중비 10%~30%, 30%~50%, 50% 이상의 영역 3가지로 구조적 거동 분류가 가능함에 따라 내폭 설계 모델 개발에 활용될 수 있을 것으로 보인다.
교량은 사용년한이 증가함에 따라 노후화로 인해 역학적인 성질과 구조적인 성능이 저하되고, 이로 인해서 강진 시에 내진성능이 저하된다. 교각과 교량받침에 대한 노후화를 몇 가지 단계로 정량화하여 해석모델에 반영하였고, 노후화된 교각과 교량받침에 대하 여 부재-수준의 지진취약도를 평가하였다. 교량 시스템의 파괴 메카니즘을 직렬시스템으로 가정하여, 부재-수준의 지진취약도 해석 결과로부터 시스템-수준의 지진취약도를 평가하는 방법을 제안하였다. 노후도에 취약한 부재인 교각과 교량받침에 대하여 5가지 정 량적인 노후도(0, 5, 10, 25, 40%)를 가정하여 부재-수준의 지진취약도를 평가하였고, 이 결과로부터 시스템-수준의 지진취약도 평가 를 수행하였다. 시스템-수준의 지진취약도는 교량받침 보다는 교각이 지배적인 영향을 줌을 알 수 있었다. 이는 보다 취약한 구조부재 의 지진취약도가 전체 교량시스템의 지진취약도에 지배적인 영향을 주는 것을 의미한다.
본 논문에서는 유한요소해석 프로그램 Abaqus를 이용하여 고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석 절차를 제시하고 해석 결과를 비교・분석하였다. 기둥에 축하중과 화재가 가해지는 상황을 해석에 반영하기 위해 Abaqus에서 제공하 는 순차 결합 열-응력 해석을 사용하였다. 우선 콘크리트 단면에 대한 열전달 해석을 수행하여 검증한 뒤, 이를 3차원 요소로 확장하고 구조해석과 결합하여 해석을 수행하였다. 해석 과정에서 수렴성 및 정확성에 영향을 미치는 인장 증강 효과와 초기 불완전성을 고려 하여 모델링하였다. 해석 결과는 74개 실험 데이터와 비교하였으며, 내화시간을 기준으로 평균 6%의 오차를 나타냄에 따라 유한요소 해석을 통해 철근콘크리트 기둥의 내화성능을 예측할 수 있게 되었다.
본 연구는 신축이음장치를 설치하지 않고 상부구조와 교대를 일체화하는 무조인트 교량의 거동해석에 대한 것이다. 선행연구에서 는 민감도 해석을 통해 무조인트 교량의 최적 수치해석 모들은 상대오차에 의한 변위 형상의 유사성과 정밀도를 유지하면서 실용적 인 shell 요소 기반 모델이 가장 적합한 것으로 판단하였다. 따라서 본 연구에서는 shell 요소 기반 모델과 solid 요소 모델간의 벽체 깊 이별 거동 분석을 수행하였다. 또한 MIDAS Civil과 ABAQUS를 사용하여 해석 프로그램간 비교를 하였다. 반일체식 교대 교량인 A 교와 B 교의 경우 선형 스프링 조건인 Case 1, +30°C의 경우 지반반력으로 인해 벽체 깊이가 깊어질수록 변위가 감소하였다. -30°C의 경우는 지반반력이 작용하지 않으므로 변위 변화가 미소하였다. 완전일체식 교대 교량인 C 교와 흉벽일체식 교대 교량인 D 교의 경우 말뚝의 저항력으로 인하여 +30°C, -30°C 모두 벽체 깊이가 깊어질수록 변위가 감소하였다. 해석 프로그램간 비교는 Case 1의 경우 상 대오차는 미소하였으나 Case 2의 경우는 차이가 발생하였다. 이는 해석 프로그램에 따른 비선형 스프링의 적용 방식의 차이로 인한 것으로 판단된다.
부분구조화 기법은 자유도가 많고 복잡한 구조물의 유한요소 해석 모델 단순화에 효율적으로 적용될 수 있는 기법이다. 대표적으 로 선형 문제에 대해서는 Craig-Bampton method 등이 있다. Craig-Bampton method는 경계 요소를 제외한 나머지 요소의 불필요한 자 유도를 제거함으로써 선형 구조물의 축소를 수행한다. 최근에는 부분구조화 기법과 더불어 구조물의 최적설계를 위해 멀티레벨 최적 화 기법이 많이 활용되고 있다. 시스템의 목표를 달성하기 위해 각 부구조에 새로운 목표를 할당하는 기법이다. 본 연구에서는 유전자 알고리즘을 이용하여 시스템 목표 달성을 위한 각 부구조별 내부 자유도 개수를 새로운 목표로 할당하고 최적화를 수행하였다. 최적 화 절차로부터 도출된 부구조별 내부 자유도 개수를 이용하여 시스템의 축소를 수행하였다. 다양한 수치예제들을 통해 축소 모델에 대한 결과를 확인하였으며, 90% 이상의 정확도를 가지는 것을 확인하였다.
경주 방폐물 처분시설의 1단계 시설로 건설된 지하 사일로 구조는 2014년에 10만 드럼 규모로 완공되어 현재 운영중에 있다. 지하 사일로 구조는 지름 25m, 높이 50m로써 방폐물을 저장하는 실린더부분과 돔 부분으로 구성되어 있으며, 돔부분은 운영터널과 연결 되는 하부 돔 부분과 상부 돔 부분으로 구분할 수 있다. 지하 사일로 구조의 벽체는 철근콘크리트 라이너이고, 두께는 약 1m이다. 본 논문에서는 지하 사일로 구조의 건설과정 및 운영과정의 단계별 유한요소해석을 수행하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소해석을 수행하였다. 2차원 축대칭 유한요소모델의 신뢰성을 검토하고자 3차원 유한요소해석도 수행하였다. 본 논문 에서는 지하 사일로 구조의 구조거동을 분석하고 구조적 안전성을 검토결과를 제시하였다.
본 연구에서는 3D 프린팅 FDM 방식의 적층 방향에 따라 기계적 물성이 달라지는 이방성 특성을 확인하고 이를 이용하여 위상 최 적설계를 수행하였다. 벤치마크 문제인 자동차 현가장치 부품 중 하나인 로어 컨트롤 암에 대하여 밀도법 기반 위상 최적설계를 수행 하였으며, 외부 하중과 이방성 특성에 따라 위상 최적결과가 다르게 나타나는 것을 확인하였다. 이를 이용하여 최적화된 모델에 대하 여 3D 프린터로 적층 방향을 달리하여 2가지 시험품을 제작하였으며 인장시험을 수행하였다. 시험시 3D 비접촉 변형률 측정기를 이 용하여 변형률을 구하였으며 이를 CAE 응답해석으로 얻은 변형률과 비교한 결과가 정량 및 정성적으로 일치하는 것을 확인하였다. 3D 프린팅 적층 방향을 고려한 위상 최적모델의 인장 실험 결과를 통해 해당 최적설계 방법론의 유효성을 검증하였다.