본 연구는 거더 상면에 연장 형성된 수직돌출부의 양측에 상부 플랜지를 가지는 주형과 바닥 면에 모서리보다 형성되어 있는 바닥 판이 현장에서 그라우팅에 의한 전단 키로 연결되어 교량구조물을 형성하는 새로운 형태의 바닥 판 조립식 교량구조를 제안하고 그에 따른 정적실험 및 유한요소해석을 통해 구조거동을 분석하여 실제 적용가능성을 입증하는데 목적이 있다. 먼저 주형과 바닥 판의 연결부에서 발생하는 구조적 평형조건을 입증하기 위해 주형과 바닥 판의 연결부에 스프링 효과를 이용한 유한요소해석을 통해 바닥 판에서 발생하는 부재 력을 해석하였다. 이때 바닥 판에 가장 불리하게 작용하는 하중위치를 관찰하였으며 이를 실제 정적실험 모델과 동일한 유한요소해석결과와 실험결과의 비교로부터 바닥 판 조립식교량은 설계하중 하에서 충분한 저항내력을 확보하고 있는 것으로 나타났다. 또한 정적실험에서의 내외측 주형의 처짐과 유한요소해석결과를 비교한 결과로부터 실험에 의한 처짐이 유한요소해석결과보다 작게 나타났으며 이러한 결과로부터 바닥 판 조립식교량의 실제 강성은 충분한 것으로 증명되었다. 또한 바닥 판 조립식교량에서 주형사이에 가로 보의 설치 갯수에 따른 하중 횡 분배효과 및 바닥 판이 합성된 후의 합성효과 등을 관찰하기 위한 유한 요소해석을 수행하였다. 하중 횡 분배효과는 편심 하중 재하 시에 가로 보의 개수가 3개로 증가하였을 때 가장 현저하게 나타났으며 합성단면에서의 하중 횡 분배는 바닥 판 연결에 의한 합성효과로 인해 비 합성 단면에서의 하중 횡 분배의 약1/2의 크기로써 효과적인 합성효과가 발생하는 것으로 나타났다. Debye 온도를 D=424K로 산출하였다.따른 NiFe층의 자기이방성의 변화는 NiFe/Cu 계면에서 NiFe/Co 계면으로 바뀜에 따른 계면 효과에 의한 것으로 사료되었다./TEX는 0.025ppm이었다. 이 두 살충제는 모기유충에 비하여 미꾸라지와 붕어에 현저히 낮은 독성을 나타내어 미꾸라지에 대한 은 Abate 에서 24.145ppm, Abate-S 에서 10.750ppm이었으며 는 Abate 에서 27.567ppm, Abate-S 에서 14.775ppm이었다. 붕어의 경우에, 은 Abate 에서 7.914ppm 그리고 Abate-S 에서 6.480ppm으로 비교적 안전한 것으로 나타났다. Abate 와 Abate-S 의 붕어에 대한 는 각각 19.898ppm과 8.568ppm으로 모기유충에 비하여 감수성이 매우 낮게 나타났다. 본 실험결과 미꾸라지와 붕어에 안전한 Abate 와 Abate-S 의 최대농도는 모기 유충의 95.0%치사농도의 8배 이상으로 나타나서 다른 수석 무척추동물에 안전하다면 이들 천적어류와 살충제를 동시에 이용한 특정 수역에서 모기의 종합적 방제(Integrated Control)를 수행하는데 매우 유용하게 사용될 수 있을 가능성을 보였다.10), 를 처리한 난자들은 1736.4192.0 (n=10)로써 유의한 (P0.05) 차이를 보였다. 이상의 결과
선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.
본 논문에서는 쉘 최적화에 대한 연구 결과를 기술하였다. 본 연구의 주목적은 쉘 구조물의 최적형상과 두께 분포를 찾는데 있다. 쉘의 변형에너지를 목적함수로 사용하고 초기 쉘의 부피를 제약조건을 고려하였다. 본 연구에서는 Computer-Aided Geometric Design (CAGD) 기법을 이용하여 쉘의 형상과 그 두께 분포를 표현하였고 쉘의 변형에너지를 측정하기 위해서 가변형 도를 채용한 퇴화 쉘 요소(Degenerated Shell Element)를 도입하였다. 최적 값을 구하기 위해서 세 가지 수학적 프로그래밍 기법을 제공하는 프로그램 DOT를 사용하였다. 마지막으로 새로이 개발된 쉘 최적화시스템의 효율성을 최적화예제로써 증명하였다.
변단 면과 다양한 경계조건을 갖는 보와 타워구조물의 제1모드에서의 고유진동수를 구하는 정확한 해는 1974년에 Kim에 의해 발표되었다. 최근 이 방법은 복합재료 적층 판을 포함하는 2차원 문제의 제 1모드 진동해석에 확장되었으며, 다양한 경계조건과 불규칙 단면을 갖는 판에 매우 효과적이다. 이 논문에서는 변단 면과 경계조건에 따른 특별직교 이방성 판에 대한, Kim에 의해 개발된 간편한 진동해석 방법의 응용결과가 주어진다. 또한 집중하중들에 대한 영향이 연구되었다.
액체 금속로(LMIR) 핵연료교환장치의 기본설계를 위해서는 여러 분야(예를 들면, 기구학, 동역 학, 재료역학 등)의 해석을 동시에 수행해야 한다. 그러나 이와 같은 해석들은 각각 별개로 연속적으로 수행되는 것이 아니라, 상호 유기적인 연관을 갖고 수행되어야 한다. 이와 같은 해석에 적합한 기법이 MDO 기법이다. 본 논문에서는 MDO기법에 의한 핵연료교환장치 구조해석의 한 단계로 핵연료교환장치의 기구 동역 학 해석을 수행하여 핵연료 교환장치 작동에 대한 기구운동학적 특성 및 동역학적 특성을 분석하였다. 분석결과 해석대상 핵연료교환장치는 예상한대로 원활하게 작동됨이 확인되었다. 아울러 이 분석 결과를 토대로 핵연료교환장치의 정적 휨 변형을 구하기 위한 재료역학해석에서 요구되는 정적구조를 결정하였다.
본 논문에서는 MDO기법에 의한 핵연료교환장치의 구조해석 단계 중 핵연료교환장치의 휨 변형을 구하는 재료역학해석을 수행하였다. 이는 액체 금속로(LMR) 핵연료교환장치의 기본설계를 위하여 매우 중요하다. 해석대상 핵연료교환장치의 정적구조는 기 수행한 핵연료교환장치의 기구 동역 학 해석 결과를 활용하였다. 네 가지 핵연료교환동작에 대하여 핵연료 봉의 무게를 100㎏에서 500㎏까지 100㎏씩 증가시켜 휨 변형의 크기를 구하였다. 그 결과 회전 중심 축에서 가장 멀리 있는 핵연료 봉을 교환하는 핵연료교환동작에서 최대 휨 변형이 발생함이 밝혀졌다. 또한 이 최대 휨 변형이 발생하는 핵연료교환장치구조에 대하여 부재의 단면두께를 축소하면서, 또 단면형상을 여러 가지로 바꾸면서 휨 변형크기를 구하여 비교하였다. 비교결과 비교대상 단면형상 중에서 중공직사각형 단면이 최소 휨 변형이 발생하는 최적단면형상임이 밝혀졌다.
본 연구에서는 비 균질 퇴적층으로 인한 지진파의 증폭에 대한 경계/유한요소 해석을 수행하였다. 수치해석을 위해, 비 균질 퇴적층은 8절점 등 매개 변수 유한요소 사용하여 모델링하였고, 그 주위의 균질 반무한 지반은 3절점 등매개 변수 경계요소를 사용하여 모델링하였다. 경계요소와 유한요소의 접촉면에서, 표면 력의 평형조건과 변위의 적합 조건에 의해 두 개의 요소를 결합하는 알고리듬을 개발하였다. 수치해석의 영향인자로서 SH파, P파와 SV파의 입사각, 무 차원 진동수 그리고 반무한 지반과 퇴적층사이의 전단 파 속도 비와 질량밀도 비를 고려하였다.
복합 적층 판과 보강 재를 설치한 보강된 복합 적층 패널의 좌굴을 고려한 설계에서, 좌굴이 항상 구조물의 최종 파손을 의미하는 것은 아니므로 이들의 좌굴 및 좌굴 후 거동에 대한 정확한 이해와 연구가 필요하다. 본 연구에서는 유한요소 법을 이용하여 적층 메커니즘과 섬유 배향각, 적층 순서 등이 복합 적층 판과 보강된 복합 적층 패널의 좌굴 및 좌굴 후 거동에 미치는 영향을 체계적으로 해석하였고, 각 변수에 따른 좌굴 및 좌굴 후 거동 특성을 분석하였다.
유한요소법의 강의와 학습을 지원하는 컴퓨터 기반 교육시스템(computer-based training system)을 개발하였다. 이 시스템은 유한요소해석을 요소 모델링에서부터, 최종결과의 계산에 이르기까지 여러 개념과 과정을 가시화하고, 사용자가 직접 상호작용 적으로 실습하고, 해석과정에 개입하여 모의 조작(simulation)하며, 그 반응을 관찰할 수 있는 여러 기능을 갖추고 있다. 이 시스템을 이용하여 실제적인 유한요소해석을 실행 할 수 있다. 따라서 이 시스템을 유한요소법의 보조 교육 재료로 활용할 뿐만 아니라 실제적인 유한요소해석 소프트웨어로 병용함으로써 유한요소법의 교육과 학습의 효과를 높일 수 있다.
다분야 통합 시스템의 설계문제는 다량의 설계변수와 구속조건으로 구성되며 다수의 공학적 현상으로 연관되어 있다. 다분야 통합 최적설계 문제를 효과적으로 다루기 위해서는 다양한 해석분야의 공학적 설계원리를 동시에 고려하여 균형 있고 유기적인 방법으로 최적의 설계를 결정하는 체계적인 설계자동화기술이 요구된다. 다분야 통합 설계문제를 위한 효율적인 설계방법론으로 분리기반 최적화 기법이 적용되는데 이 방법은 한 단위의 대규모 설계문제를 여러 개의 하부시스템으로 분리하여 독립적으로 최적화를 수행하고 각 하부 시스템으로부터의 설계해 사이의 중재 및 통합화를 거쳐 최종적으로 수렴된 최적설계를 찾는 방법이다. 본 논문에서는 분리기반 최적화기법을 다분야 통합최적 설계문제에 적용하는데 필요한 시스템분리기법을 유전알고리즘 및 다층 역전 파 신경회로망을 이용하여 정립하였다. 시스템분리기법을 검증하기 위해 최근 미국 Boeing사에서 개발중인 고속 민간항공기인 HSCT의 시뮬레이션기반 설계문제를 이용하였다. 대규모 설계시스템의 분리결과는 전체 설계문제의 특성을 파악하기 위한 자료로 활용되며 향후, 분리기반 최적화과정에서 최종적으로 통합된 최적설계를 탐색하는데 필요한 기반구조를 제공한다.
본 연구에서는 고속철도에서 차량교량 구조물의 상호작용을 가능한 정밀하게 취급할 수 있는 3차원 해석모형을 개발하였다. 경부고속철도 교량형식인 PSC 박스거더 교량을 40m 단순 와 25-40-25m 3경간 연속 에 대해 뼈대요소를 사용하여 3차원으로 모형 하였으며, 궤도의 불규칙성은 정상확률과정으로 가정하고, 지수 스펙트럼 밀도함수를 사용하여 궤도의 형상을 생성시켰다. 열차는 경부고속철도 차량 하중효과가 가장 큰 동력차 만을 대상으로 17 자유도 모형과 38 자유도 모형으로 분리하여 개발하였다. 다양한 조건에 대한 분석결과를 검토하면 여러 가지 상황에서 38 자유도 모형의 필수 성이 보여지고 있다. 특히 교량의 솟음 및 장기 처짐에 의한 궤도형상변화가 있는 경우에는 반드시 38 자유도 모형이 적용되어야 하는 것으로 분석되었다. 또한 제동하중이 작용할 때 쏠림 효과에 의한 영향이 큰 것으로 평가되어, 제동에 의한 교량의 동적 거동은 종변 위에 대한 자유 도를 고려할 수 있는 주행차량모형으로 해석되어야 함이 규명되었다.
레이더법은 건축구조물에 대한 비파괴 검사의 대표적인 방법의 하나이다. 레이더법을 이용하는데 영향을 주는 요인들을 연구하고, 레이더로 측정된 결과들을 분석하기 위해서는 전자기파의 전파에 대한 수치적인 모델링을 통한 이론적인 접근이 필요하다. 콘크리트 시편에 전파되는 전자기파를 모델링 하기 위해 유한차분 시간영역법을 적용하고자 한다. 유한차분 시간영역법은 전자파 해석과 모델링을 통한 시뮬레이션에 매우 유용한 방법이다. 본 연구에서는 유한차분 시간영역법을 이용하여 두께가 다른 4개의 시편과 두께는 100로 동일하고 피복두께가 다른 3개의 시편을 3차원으로 모델링 하였다. 두께 측정 모델링 결과에서는 계산영역의 셀간격과 입사파의 파장/콘크리트 시편의 두께값이 모델링의 정확성에 미치는 영향을 알 수 있었다. 철근이 있는 시편의 모델링에서는 0.08%0.5%의 오차로 철근의 위치를 확인할 수 있었다.
본 연구에서는 점탄성감쇠기가 설치된 비비례 감쇠 구조물의 바람에 대한 확률적 응답을 진동수영역에서 구하였다. 복소수 고유치 및 고유백터를 바탕으로 모드중첩법을 이용하여 응답의 RMS 값을 구하고 그것을 근사적인 방법인 모드 변형에너지법에서 얻은 결과와 비교하였다. 또한, 가력 진동수에 따라서 변하는 점탄성감쇠기의 강성 및 감쇠 계수를 상수로 모형화하였을 때의 풍응답 해석 결과의 정확성을 진동수영역에서 검증하였다. 해석결과에 의하면 감쇠기의 진동수 의존 특성은 구조물의 1차 고유 진동수에 의해서 비교적 정확하게 표현되었고, 모드 변형에너지법은 대체로 정확한 결과를 도출하였지만, 가속도 응답을 구할 때에는 다소 큰 오차를 유발하였다.
이 논문은 탄성지반위에 놓인 원호형 곡선보의 자유진동에 관한 연구이다. 회전관성 및 전단변형을 고려하여 두 개의 매개변수로 표현되는 탄성지반위에 놓인 원호형 곡선보의 자유진동을 지배하는 미분방정식을 유도하고, 이를 수치적분기법과 시행착오적 행렬값탐사법이 결합된 수치해석기법으로 해석하였다. 회전-회전, 회전-고정 및 고정-고정의 단부조건을 갖는 곡선보의 최저차모드 3개의 고유진동수를 산출하였다. 곡선보의 수평높이 지간길이비, Winkler 지반계수, 전단지반계수에 따른 고유진동수 변화를 분석하였으며, 회전관성 및 전단변형의 영향을 고찰하였다.
건물의 진동에너지 소산능력을 향상하기 위하여 점탄성감쇠를 설치하게 되면 이른바 비비례 감쇠시스템이 되어 구조물은 복소수형태의 고유모드와 고유치를 가진다. 복소모드중첩법은 이러한 복소모드를 이용하여 중첩함으로써 비비례 감쇠시스템 구조물의 정확한 동적 거동을 얻을 수 있는 방법이다. 그러나 건물이 고층화되면 많은 자유도로 인하여 고유치해석 및 모드중첩과정에서 많은 시간과 노력이 필요하게 된다. 본 논문에서는 효율적인 구조물의 모형화를 위하여 강막가정과 행렬응축기법을 적용하였다. 또한 몇 개의 주요 모드만을 선택하여 중첩하는 방법에 대하여 연구하였으며 구조물의 진동에 영향을 주는 모드의 선택을 위한 복소모드 응답참여계수를 제안하였다. 제안된 해석방법의 정확성과 효율성을 검토하기 위하여 예제 구조물을 대상으로 해석한 결과, 응답의 정확성을 유지하면서 해석에 필요한 시간을 대폭 절감할 수 있었다.
본 논문에서는 요소를 사용하지 않은 수치해석기법인 무요소법 중에서 다중해상도(multi-resolution)특성이 내재되어 있는 Reproducing Kernel Particle Method (RKPM)의 이중스케일 분해기법을 사용하여 RKPM의 형상함수를 상단성분과 하단성분으로 분리하고 이를 3차원 선형탄성해석과정에 적용하여 von Mises 응력장의 상하단성분을 유도하였다. 유도된 응력장의 상단성분을 이용하여 후처리과정을 거치지 않고도 응력의 고변화도 부위를 손쉽게 파악할 수 있는 기법을 개발하였으며 이를 이용한 효율적인 적응적 세분화기법의 적용가능성을 연구하였다. 대표적인 2차원 및 3차원 응력집중 문제에 적용하여 응력집중부위를 파악하고 간단한 적응적 세분화과정에 따른 절점추가를 통하여 해의 정도 향상을 파악해 본 결과, 본 연구에서 개발된 기법이 응력집중부위를 정확히 판정할 수 있었으며 효율적인 적응적 세분화기법의 유용한 도구로서 활용될 수 있음을 검증하였다.
본 연구에서는 요소를 사용하지 않는 새로운 해석방법인 EFG(Element-Free Galerkin)법을 사용하여 복수의 초기균열을 지닌 강재가 반복피로하중을 받는 경우 균열들이 점진적으로 성장하여 부재가 파단에 이르는 과정을 해석적으로 규명하였다. 이를 위하여 본 연구에서는 일반적인 피로균열성장법칙을 EFG법을 이용한 균열해석 알고리즘에 적용하여 복수의 균열들이 각각의 응력상태에 따라 차별적으로 성장해 나가는 과정을 해석할 수 있는 알고리즘을 도입하고 이를 바탕으로 다양한 하중상태하에서 복수의 균열들의 성장경로를 추정함과 동시에 이에 따른 잔존수명을 산정할 수 있는 기법을 제시하였다. 본 연구에서 제안된 해석방법을 피로균열 발생빈도가 큰 몇가지의 강부재 형태에 적용해 본 결과 다수균열 함유 부재의 피로균열 성장거동과 균열들의 피로수명을 성공적으로 예측할 수 있었다.