이 연구의 목적은 축소된 탱크 모델에서 측정되어진 슬로싱 압력을 이용하여 실제 크기의 탱크 모델에서의 압력을 예측하는 것이며, 또한 예측된 압력으로 LNG 코너 블럭의 슬로싱 하중에 의한 구조 강도를 평가하는 것이다.
이 목적을 위하여, Ansys CFX 프로그램을 이용하여 138K급 LNG 화물창 시스템의 크기 비율에 따른 슬로싱 해석을 수행 하였으며, 크기 비율에 따른 슬로싱 평균 압력 및 최대 피크 압력을 측정하였다. 또한, 측정된 압력은 프루드 법칙에 의해 실제 138K 크기의 압력으로 변환하여 실선 크기의 KC-1 코너블럭에 대한 구조강도 평가를 수행하였다.
최근 환경오염 문제에 대한 심각성이 대두되며 전 세계적으로 환경부하 저감을 위해 다양한 노력을 쏟고 있다. 특히 환경 저해 산업의 하나인 건설분야에서는 CO2배출량과 에너지 소비량을 줄이기 위해 활발한 연구를 진행해 왔다. 그러나 건설분야의 기존 연구들은 대부분 CO2배출량이 가장 큰 사용 및 유지관리 단계에만 집중하고 있으며, 설계단계에 대한 연구는 2D의 철근콘크리트 부재 및 구조물에 대해서만 실행되었을 정도로 초기단계이다. 사실, LCA적 관점에서 친환경적 건설산업을 이루기 위해서는 건물의 초기설계 단계에서부터 CO2배출량을 저감시키기 위한 방향으로 설계를 유도할 수 있어야 하며, 구조 엔지니어로서 환경성을 고려한 설계안을 제시할 수 있어야 한다. 그러므로 본 연구에서는 매입형 합성기둥(SRC)을 대상으로 CO2최적화 기법을 제시하였으며, 이를 통해 얻은 여러 설계단면을 이용하여 SRC기둥의 CO2배출량에 영향을 미치는 3가지 요소(① 강재 크기, ② 콘크리트 압축강도, ③ 작용 하중 크기)에 대한 영향관계를 분석하였다.
항공기 연료셀은 추락 상황에서 승무원의 생존성과 직결되는 중요 구성품으로 회전익 항공기에 적용되고 있는 내충격성 연료셀은 추락시 승무원의 생존성 향상에 큰 역할을 하고 있다. 미육군은 항공기가 처할수 있는 다양한 상황에서 연료셀이제 기능을 발휘할 수 있도록 1960년대 초부터 MIL-DTL-27422 이라는 연료셀 개발규격을 제정하여 현재까지 적용해 오고있다. 해당 개발규격에 규정된 시험 중에서 충돌충격시험은 연료셀의 내충격 성능을 검증하는 시험으로써, 해당 시험을 통과하는 연료셀은 생존가능 충돌환경에서 화재가 발생하지 않아 승무원의 생존성이 대폭 향상될 수 있음을 의미한다. 그러나 충돌충격시험은 작용하는 하중 수준이 너무 높기 때문에 실패 위험성이 가장 큰 시험이기도 하다. 연료셀이 해당 시험을 통과하지 못하는 경우에는 재시험을 위한 비용과 준비기간이 상당히 소요되어 항공기 개발일정에 심각한 지장을 초래할 가능성도 높다. 따라서, 연료셀 설계 초기부터 내충격성능 만족여부에 대한 예측을 위해 충돌충격시험의 수치해석을 통한 실물시험에서의 실패 가능성을 최소화해야 한다는 필요성이 제기되어 왔다. 본 연구에서는 충돌모사 프로그램인 LS-DYNA에서 지원하는 유체-구조 연성해석 방법인 SPH 방법을 사용하여 연료셀 충돌충격시험 수치 모사를 수행하였다. 수치해석 조건으로 MIL-DTL-27422에서 요구하는 시험조건을 고려하였고, 실물 연료셀의 시편시험을 통해 확보한 물성데이타를 해석에 반영하였다. 그 결과로 연료셀 자체의 응력수준을 평가하고 취약부위에 대한 고찰을 수행하였다.
본 논문에서는 Pothead를 지지하는데 사용하는 지그의 고유진동수를 일정 범위로 제한하여 Pothead와 공진을 일으키지 않도록 하는 지그의 최적 설계안을 제시한다. 쿤 터커(Kuhn-Thucker) 조건을 적용한 최적기준법(Optimality criteria method)을 사용하여 위상 최적화를 수행하였고, 이 과정에서 유한요소 크기기 최적 형상에 미치는 영향을 검토하였다. 또한 위상 최적화 결과를 바탕으로 실험 계획법(Design of experiments)과 반응 표면법(Response surface method)을 사용하여 형상 및 치수 최적화를 수행하여 비교용 지그에 비해 전체 질량이 30% 감소되는 결과를 얻었다. 마지막으로 최적화된 지그의 내진 해석을 수행한 Pothead의 응답은 Metal Handbook에서 제시된 내진 응답을 만족하고 있다.
본 논문은 두 편으로 구성된 사고로 지면에 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석 논문 중 첫 번째 논문으로 기구동역학 해석에 대한 일반 이론연구를 수행하였다. 이를 통하여 고준위폐기물 처분용기의 구조 안전성 설계에 요구되는 처분용기 처분 시 사고로 추락낙하 하여 지면과 충돌하는 경우 처분용기에 가해지는 충격력을 이론적으로 구하고자 하였다. 이론 연구의 주된 내용은 다물체 동역학의 운동방정식에 관한 것이며 이를 토대로 다물체간 충돌 시 발생하는 충격력을 구하는 문제를 이론적으로 다루었다. 이렇게 이론적으로 구한 충격력을 처분장에서 처분용기 운송 시 운반차량에서 사고로 추락낙하 하여 지면과 충돌하는 처분용기에 발생하는 충격력을 구하는 문제에의 적용을 검토하였다.
본 논문은 두 편으로 구성된 사고로 지면에 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석 논문 중 두 번째 논문으로 기구동역학 해석에 대한 수치해석연구를 수행하였다. 이를 통하여 고준위폐기물 처분용기의 구조 안전성 설계에 요구되는 처분용기 처분 시 사고로 추락낙하 하여 지면과 충돌하는 경우 처분용기에 가해지는 충격력을 수치적으로 구하였다. 수치해석 연구의 주된 내용은 상용 기구동역학 해석코드를 이용하여 처분장에서 운송차량으로 처분용기 취급 시 사고로 추락낙하 하여 지면과의 충돌 시 처분용기에 발생하는 충격력을 구하는 기술적인 방법에 관한 것이며 이를 토대로 지면과 충돌 시 처분용기에 발생하는 충격력을 구하는 문제를 수치적으로 다루었다. 이렇게 수치적으로 구한 처분장에서 처분용기 운송 시 운반차량에서 사고로 추락낙하 하여 지면과 충돌하는 처분용기에 발생하는 충격력을 분석한 결과 처분용기의 무게가 증가 할수록 충격력도 증가하며 처분용기는 추락낙하 하여 세 가지 유형으로 지면과 충돌함을 알 수 있었다.
유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리잡고 있으며, 근래에는 다소 복잡한 동적 및 비선형 문제에도 사용이 일반화되고 있다. 이러한 거동 예측이 어려운 구조해석에도 구조물을 적절한 유한요소와 요소망으로 표현하면 신뢰있는 해석 결과를 얻을 수 있다. 구조물의 동적 또는 비선형 거동에는 예상하지 않은 부분에서 큰 변형이 일어날 수 있으며, 유한요소해석 과정에서 같은 요소망을 계속 사용하면 요소의 모양이 신뢰 범위 밖으로 변형될 수 있으므로 요소망 역시 동적으로 적응할 필요가 있다. 또한, 유한요소 프로그램의 사용자 요구 사항 중 하나가 실시간으로 빠르게 진행되는 것이므로 연산면에서 효율적이어야 한다. 본 연구는 시간영역 동적해석에서 전 단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가에 사용하여 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 요소 세분화를 진행하여 동적으로 적응하는 요소망 형성 과정을 기술한다. 해석 중 과대하게 변형되는 요소는 모양계수 개념으로 방지한다. 간단한 프레임의 동적 유한 요소해석을 예제로 정확성과 연산 효율성을 보여준다. 본 연구에서 제시하는 적응적 유한요소망 형성 전략은 복잡한 동적 및 비선형 해석에 일반적으로 적용될 수 있다.
본 논문은 그래핀의 모드 I 균열 진전에 대한 분자동역학 해석과 수치보조장을 사용하는 영역 투영 방법의 역문제 해석방법을 결합하여 균열 선단 응집 법칙을 평가하는 효율적인 방법을 제시하고 있다. 그래핀의 균열 선단 응집 법칙을 결정하는 것은 균열 선단에서 멀리 떨어진 영역의 변위를 사용하여 균열 면에서 미지의 응집 트랙션과 열림 변위를 구하는 역문제를 해석해야 하는데 상호 J-적분과 M-적분의 경로 보존성과 효율적인 수치보조장을 사용하는 방법을 적용하였다. 분자동역학 해석에서 원자 변위를 유한요소 절점 변위로 이동최소자승법을 사용하여 근사하였으며 안정적인 역문제 해석을 통하여 원자 단위의 거동을 연속체 해석으로 연결시킬 수 있는 새로운 방법을 보여주었다.