본 논문에서는 BIM을 활용한 흙막이 시스템을 개발하고 소개한다. 선행 연구 분석을 통해서 흙막이 BIM 시스템을 이루는 기술들 에 대한 조사를 바탕으로 요소 기술들을 개발하였다. 첫 번째 요소 기술로, 선행 연구 및 표준 등을 활용해 BIM라이브러리를 구축하여 범용성과 재사용성을 확보하였다. 두 번째로, 토공 2D 기반의 토공 물량 산출법들을 분석하고 흙막이 BIM 시스템으로 활용하되 추가 로 IDW 보간법을 활용하여 지형 생성 및 토공량 산출 시스템을 구축하였다. 세 번째로, 물량 산출을 위한 4가지 수식을 제안하여 객체 마다 각각 다르게 물량 산출법을 적용하여 개발하였다. 이후, 시스템에서 산출되는 물량산출서와 2D 기반 물량산출서와의 비교와 검 증을 통해서 시스템이 앞으로 나아가야할 방향과 한계에 대해 알아보았다.
본 연구에서는 유한요소해석 D/B를 기반으로 보간식을 산출하여 개활지 폭발현상에 의해 기둥에 작용하는 폭압이력을 예측하는 모델을 개발했다. D/B 구성을 위해 7종류 기둥 너비에 대해 총 70회의 유한요소해석을 수행했다. 제안하는 방법의 성능확인을 위해, 기존에 제시된 경험식 기반의 예측식과의 비교연구를 수행했다. 또한, D/B를 구성하는 point 외의 영역에서의 예측 정확도 확인을 위 해 유한요소해석 결과와의 비교/검증 연구를 추가로 수행했다. 제안하는 방법은 기존의 경험식 기반 예측식에 비해 유한요소해석 결 과와 유사한 결과를 산출함을 확인했다.
우수한 역학적 성능을 가진 생물체의 구조를 모방하여 고성능의 복합재료를 개발하려는 노력이 최근 활발히 이뤄지고 있다. 진주 층 구조는 구성재료 대비 월등히 높은 파괴인성을 지닌다는 점에서 촉망받는 자연 모사 구조 중 하나이다. 하지만, 진주층 모사 구조의 형상이 변형될 때 구조의 충격성능이 어떻게 달라지는지에 관한 연구는 아직 충분히 진행되지 않았다. 본 연구에서는 무작위로 변형 된 진주층 모사 복합재의 수치모델을 개발하고 충격성능을 분석하였다. 먼저, 균일한 진주층 모사 패턴에서 플레이트 판의 평면 크기 를 무작위로 변형하는 알고리즘을 개발하고 이를 활용하여 불균일한 진주층 패턴 모사 구조를 모델링하였다. 그 후, 낙하충격 시뮬레 이션을 수행하고 해당 모델의 충격거동을 에너지 흡수율과 본 미세스 응력 분포, 충격력-시간 그래프를 활용하여 평가하였다. 수치해 석결과를 바탕으로, 충돌 범위 주변 플레이트 판의 기하학적 형상이 불균일할수록 진주층 모사 구조의 내충격성이 저하됨을 입증하 였다. 이러한 진주층 모사 형상에 대한 심층적인 이해는 진주층 모사 구조의 최적설계를 수립하는 데 효율적으로 활용될 수 있을 것으 로 기대된다.
3D 프린팅은 다수의 레이어(layer)를 적층하여 물체를 제작하는 기법으로, 복잡한 형상을 가지는 물체를 비교적 쉽게 제작할 수 있 다. 이를 건설 산업에 접목한 3D 콘크리트 프린팅(3D concrete printing)은 콘크리트 타설 시 거푸집을 사용하지 않으며, 비교적 적은 작업량과 인력이 요구되므로 경제적인 시공이 가능하나, 출력된 3D 프린팅 콘크리트는 일반 콘크리트 대비 다소 낮은 강도가 예상된 다. 따라서, 본 연구에서는 3D 프린팅 콘크리트 시편의 물성을 분석하였다. 3D 프린팅 콘크리트 시편 출력을 위해 Ultimaker Cura 소 프트웨어로 형상 및 출력 경로를 설계하고, 이를 바탕으로 3D 프린터를 제어하는 G-code를 생성하였다. 연구에서 사용된 3D 프린터 의 출력 성능과 콘크리트의 적층성, 유동성 등을 고려하여 최적의 배합비를 선정하였고, 시편 출력에 활용하였다. 시편 출력 시 동일 한 치수를 가지는 몰드 시편을 함께 제작하여 비교・분석에 사용하였다. 각 시편의 물성은 휨강도 시험과 압축강도 시험을 통해 각각 의 강도를 측정하였고, 비교・분석하여 3D 프린팅 콘크리트 시편의 물성을 확인하였다.
시공 중인 건물은 시공이 완료된 건물과는 다르게 콘크리트의 강도발현이 충분히 이루어지지 않았기 때문에 지진과 같은 자연재해 에 더 취약한 모습을 가질 수 있다. 현재 국내 기준은 건축물의 내진등급별 최소성능 목표를 제시하고 있지만, 설계를 위한 지진하중은 재현주기 2,400년의 지진위험도를 기반으로 한다. 하지만 건물의 시공기간은 건물의 사용기간보다 훨씬 짧기 때문에 재현주기 2,400 년의 지진을 시공 중인 건물에 적용하는 것은 과도하다. 따라서 이 연구는 주거용으로 사용되는 철근콘크리트 건물의 시공 중 지진하 중을 분석하기 위해 5층, 15층, 25층, 60층 건물의 시공단계모델을 작성하고 재현주기에 따라 저감한 지진하중을 적용하여 구조적 안 정성을 확인하였다. 그 결과, 시공기간에 따라 선정한 재현주기의 지진을 적용할 때 구조적 안정성을 확인하였으며, 건물의 규모의 따 라 구조적 안전성을 확보할 수 있는 지진재현주기를 확인하였다.
본 논문에서는 1차원 오일러 보 요소(Euler-Bernoulli Beam Element)를 이용한 회전익기 축계에 대한 중량 최적설계를 수행하였다. 회전 축계의 특성을 고려해 비틀림(Torsion)과 베어링과 같은 축지지 강성 및 플랜지(Flange) 질량을 모두 고려하였고, 동적 안전성 확 보를 위해 고유치 해석을 수행하여 임계속도(Critical Speed)와 기어박스로부터 오는 치 변형 가진을 회피할 수 있도록 하였다. 축의 길 이는 고정된 상태에서 두께와 반경을 조절하여 중량 최적화를 수행하였으며, 최적화 과정은 2단계로 나누어 진행하였다. 1단계에서 는 비틀림 강도를 제약조건으로 하여 중량을 최적화한 후 2단계에서는 축계 안정성 확보 기준(Headquarters, U.S. Army Material Command, 1974)에 따라 축의 비틀림 강도에 대한 제약조건을 만족시키며, 축의 1차 모드가 임계속도를 회피할 수 있도록 축 1차모드 와 임계속도의 차이가 최대가 되도록 최적화를 진행하였다. 주어진 1차원 보 요소를 이용하여 최적설계를 한 결과를 3차원 유한요소 모델과 실제 제작된 축게의 시험결과와 비교하여 제안된 방법을 검증하였다.