본 논문에서는 1차원 오일러 보 요소(Euler-Bernoulli Beam Element)를 이용한 회전익기 축계에 대한 중량 최적설계를 수행하였다. 회전 축계의 특성을 고려해 비틀림(Torsion)과 베어링과 같은 축지지 강성 및 플랜지(Flange) 질량을 모두 고려하였고, 동적 안전성 확 보를 위해 고유치 해석을 수행하여 임계속도(Critical Speed)와 기어박스로부터 오는 치 변형 가진을 회피할 수 있도록 하였다. 축의 길 이는 고정된 상태에서 두께와 반경을 조절하여 중량 최적화를 수행하였으며, 최적화 과정은 2단계로 나누어 진행하였다. 1단계에서 는 비틀림 강도를 제약조건으로 하여 중량을 최적화한 후 2단계에서는 축계 안정성 확보 기준(Headquarters, U.S. Army Material Command, 1974)에 따라 축의 비틀림 강도에 대한 제약조건을 만족시키며, 축의 1차 모드가 임계속도를 회피할 수 있도록 축 1차모드 와 임계속도의 차이가 최대가 되도록 최적화를 진행하였다. 주어진 1차원 보 요소를 이용하여 최적설계를 한 결과를 3차원 유한요소 모델과 실제 제작된 축게의 시험결과와 비교하여 제안된 방법을 검증하였다.
Weight optimization was performed for a rotorcraft shaft system using one-dimensional Euler-Bernoulli beam elements. Torsion, shaft support stiffness such as bearings, flange mass are all considered. To guarantee structural dynamic stability, eigenvalue analysis was performed to avoid critical speed and tooth mesh excitation form the gearbox. The weight optimization was performed by adjusting the thickness and radius while the length of the shaft was fixed, and the optimization process was divided into two stages. In the first, the weight is optimized with the torsional strength constraint. In the second, the difference between the primary mode of shaft and the critical speed is maximized so that the primary mode of the shaft can avoid the critical speed while the constraint on the torsional strength of the shaft is satisfied according to the standard for shaft system stability (AMC P 706-201, 1974). The proposed method was verified by comparing the results of the optimal design using the given one-dimensional beam elements with the stress results of the 3D finite element and the actual manufactured shaft.