본 논문에서는 요소를 사용하지 않은 수치해석기법인 무요소법 중에서 다중해상도(multi-resolution)특성이 내재되어 있는 Reproducing Kernel Particle Method (RKPM)의 이중스케일 분해기법을 사용하여 RKPM의 형상함수를 상단성분과 하단성분으로 분리하고 이를 3차원 선형탄성해석과정에 적용하여 von Mises 응력장의 상하단성분을 유도하였다. 유도된 응력장의 상단성분을 이용하여 후처리과정을 거치지 않고도 응력의 고변화도 부위를 손쉽게 파악할 수 있는 기법을 개발하였으며 이를 이용한 효율적인 적응적 세분화기법의 적용가능성을 연구하였다. 대표적인 2차원 및 3차원 응력집중 문제에 적용하여 응력집중부위를 파악하고 간단한 적응적 세분화과정에 따른 절점추가를 통하여 해의 정도 향상을 파악해 본 결과, 본 연구에서 개발된 기법이 응력집중부위를 정확히 판정할 수 있었으며 효율적인 적응적 세분화기법의 유용한 도구로서 활용될 수 있음을 검증하였다.