논문 상세보기

해석모델의 불확실성을 고려한 교량의 손상추정기법 KCI 등재

Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/324366
구독 기관 인증 시 무료 이용이 가능합니다. 4,600원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

교량의 손상추정을 위한 구조계 규명기법은 신호취득시스템 및 정보처리기술의 발전과 함께 최근에 많은 연구개발이 이루어지고 있다. 신경망기법이나 유전자 알고리즘과 같은 소프트컴퓨팅 기법은 뛰어난 패턴인식성능 때문에 손상추정 문제에 활발히 활용되고 있다. 본 연구에서는 모드계수를 활용한 신경망기법기반 손상추정을 수행하였으며, 신경망을 훈련시키기 위한 훈련패턴을 생성하는 해석모델에서의 불확실성을 효과적으로 고려할 수 있는 방법을 제시하였다. 해석모델의 불확실성 대하여 민감하지 않은 입력자료인 손상 전 후의 모드형상의 차 또는 모드형상의 비를 신경망의 입력자료로 활용하였다. 단 순보와 다주형교량에 대한 수치예제를 통하여 본 연구에서 제시한 기법의 타당성 및 적용성을 검증하였다.

The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in data acquisition system andinformation processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, damage detection of bridge structures using neural networks technique based on the modal properties is presented, which can effectively consider the modeling uncertainty in the analysis model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness and applicability of the proposed method.

저자
  • 이종재(한국과학기술원 건설 및 환경공학과 박사후연구원) | Lee, Jong-Jae
  • 윤정방(한국과학기술원 건설 및 환경공학과 교수) | Yun, Chung-Bang