본 논문에서는 포화된 다공성매체에서 파동의 전파속도와 감쇠를 구할 수 있는 해석적 이론해를 유도하여 제시하였다. 이론해의 유도를 위하여 압축성의 고체입자와 간극수를 고려하는 완전 연계 Field모델을 사용하였다. 완전 포화된 다공성 매체의 해석을 위한 공학적인 접근방법이 채택되었으며, 균질 영역에서 1차원 파동의 전파를 위한 이론해가 유도되었다. 본 논문에서 유도한 이론해는 고체입자의 압축성, 간극수의 압축성, 다공성입자의 변형, 공간의 감쇠(Spatial damping) 등을 고려할 수 있어 매우 다양하게 사용될 수 있다. 또한 다양한 지반체에서 두 가지 종류의 파속(Wavespeed)과 감쇠계수를 계산하는데 이용 가능하다. 본 논문에서 제시한 이론해를 전산코드화하여 파동의 전파속도와 감쇠에 대한 파라미터연구를 수행한 결과는 본 연구의 II부에 제시할 예정이다.
An analytical closed-form solution for wave propagation velocity and damping in saturated porous media is presented in this paper The fully coupled field model with compressible solid Brains and pore water were used to derive this solution. An engineering approach for the analysis of fully saturated porous media was adopted and closed-form solutions for one dimensional wave propagation in a homogeneous domain were derived. The solution is highly versatile in that it considers compression of the solid grains, compression of the pore water, deformation of the porous skeleton, and spatial damping and can be used to compute wavespeeds of first and second kind and damping coefficients in various geologic materials. This solution provides a means of analyzing the influence of material property variations on wavespeed and attenuation. In Part 2 of this work the theoretical solution is incorporated into the numerical code and the code is used in a parametric study on wave propagation velocity and damping.