본 연구는 2차원 및 3차원 동적 탄소성 응력 해석을 위한 특수 적분해 경계요소법의 공식 개발을 제시한다 정적 탄성에 대한 기본식이 일반해를 구하는데 이용되었으며, 전체형상함수 개념을 이용하여, 변위율과 traction rate의 특수 적분해를 구함으로써 지배 방정식의 가속도 부분을 근사화시켰다. 시간 적분을 위하여 Houbolt 시적분 방법을 이용하였으며, Newton-Raphson 알고리즘을 이용하여 수치 연산을 행하였다. 제시된 공식에 따른 예제 해석을 통하여 그 방법의 유효성과 정확성을 설명하였다.
The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.