본 연구는 해상풍력 터빈 블레이드 에어포일 설계를 다룬다. 풍력 터빈 설계의 목표는 특정 대기 조건에서 가능한 가장 높은 출력을 얻는 것이다. 공기역학적 부하에 대한 수학적 설명으로 최적의 블레이드 형상을 결정하는 문제는 복잡하고 많은 제약과 목표를 충족해야 한다. 본 연구의 목적은 여러 기준에 따라 풍력 터빈 블레이드의 최적화를 가능하게 하는 직접 설계 방법으로 두 가지 유형의 에어포일 모델 개발이다. 블레이드 요소 운동량 이론을 기반으로 유체역학적 풍력 터빈 설계에 대한 수학적 모델을 생성하고 효율을 향상시켰다. 결과적으로, CFD 시뮬레이션을 통해 고효율 에어포일 모델을 설계했고, 실험 데이터와의 비교를 통해 검증했다.
Adhensively bonded joints in dissimilar materials have been widely applied in various engineering fields such as automobiles, space vehicle, semiconductor, vessel. To establish a fracture criterion and a reasonable strength evaluation method on adhensively interfaces in dissimilar materials, it is necessary to assess fracture parameters with various bonding conditions. In this paper, through stress analysis by using the 2-dimensional elastic boundary element method(BEM), the stress singularity factors on adhensively bonded joint in dissimilar materials were investigated quantitatively, and suggested the strength evaluation method by using fracture parameters
Computational algorithms and their implementations are studied for the treatments of kernel function’s shadow effects, which occurs in the application of the BEM(boundary element method) for radiation heat transfer analysis. In this problem, surfaces are assumed to be diffuse and gray placed in two-dimensional enclosures with transparent medium. Self-blocking or third party blocking is possible when the radiosity from the BEM nodes cannot reach the destination points. Also the third party blocking can be the partial or total blocking case. Algorithms, which can accurately recognize the each blocking cases and reflect the shadow effects to the BEM kernel function, are studied in this paper. Effective implementation methods are presented, and their results are verified by the test problem
유연한 액체 저장탱크 내 유체의 부가질량 및 슬러싱 강성행렬을 도출하는 새로운 방법을 제시하였다. 비점성, 비압축성 이상유체를 표면 출렁임을 고려하여 경계요소법에 의하여 모델링하였다. 유체의 표면과 저장탱크 벽체의 접촉면과 같은 불연속 경계를 다루기 위해 특별한 과정을 도입하였다. 원통형 액체저장탱크의 지진응답해석에 적용하여 우수한 결과를 얻을 수 있음을 확인하였다.
대수심의 유체운동을 포텐셜 운동으로 가정하여 자유수면의 거동을 신속히 해석하는 BEM 해석법과 구조물 근방에서 유체의 자유 수면 변화를 계산하기 위하여 NS방정식의 해석으로 CADMAS-SURF 기법을 결합하여 하이브리드 수치기법을 개발하였다. 하이브리드 해석법에서는 반사파를 고려해야 할 넓은 영역에서, 대수심의 영역은 BEM이, 천수역은 CADMAS-SURF가 계산하게 된다. 특히, 하이브리드 모델은 장시간에 걸친 불규칙파의 운동에 대해서는 단독의 CADMAS-SURF을 이용한 계산에 비해 거의 동일한 정확도로 월등히 신속하게 계산할 수 있다. 본 연구에서는 완경사 해저면을 가진 넓은 해역에서, 호안구조물에 내습하는 파랑의 처오름과 월파와 같은 강비선형 파랑장 계산에 결합해석모델을 적용하였다. 계산결과는 각각 토요시마(풍도(豊島))의 규칙과 처오름 실험과 고다(합전(合田))가 제안한 불규칙파의 월파량 산정도와 비교하였다.
최근의 해안, 해양공학 분야에서는 구조물이 있는 영역의 파동을 계산하기 위해 Navier-Stokes 방정식을 기초로 한 많은 기법들이 개발되고 발전되어 왔다. 이들 중 파랑의 쇄파현상 등의 복잡한 파동현상을 재현하기 위한 수치해석 기법으로 Volume Of Fluid method (보프법)에 근거를 둔 수치해석 기법이 자주 사용되어지고 있다. 그러나 보프법은 일반적으로 방대한 계산시간과 기억용량이 요구되는 단점을 가지고 있어, 적어도 100주기 이상의 계산시간을 통한 해석이어야만 만족할 만한 결과가 나타나는 불규칙파랑의 경우, 보프법의 단독 적용으로는 현실적으로 어려워진다. 한편, 경계요소법(BEM)의 경우는 파랑을 신속하고, 정확하게 계산할 수 있으나, 비선형 현상을 재현할 수 없는 단점이 있다. 본 연구는 불규칙 파랑을 대상으로 하고, 구조물이 있는 경우의 파동현상도 계산이 가능한 수치 해석 기법의 개발을 목표로 하고 있다. 이를 위해, 두 기법의 장점을 살려 쇄파현상 등으로 인해 비선형 현상의 재현이 요구되는 영역에서는 보프법을 사용하여 계산하고, 비선형성을 무시할 수 있어 포텐셜이론이 적용 가능한 구간에서는 BEM을 사용하여 계산을 하도록 두 기법을 연결한 BEM-VOF model을 개발하였다. 개발된 수치모델의 검증은 5차 스톡스파의 파랑전파 및 불규칙파랑의 전파를 통해 수행하였다.