This study was carried out to evaluate the developed microstructures and mechanical properties of friction welded A6063 alloy. For this work, specimens were prepared at a size of 12 mm Ø × 80 mm, and friction welding was carried out at a rotation speed of 2,000 RPM, friction pressure of 12 kgf/cm² and upset pressure of 25 kgf/cm². To perform an analysis of the grain boundary characteristic distributions, such as the grain size, orientation and misorientation angle distributions, the electron back-scattering diffraction method was used. In addition, in order to identify the dispersed intermetallic compounds of the base and welded materials, transmission electron microscopy was used. The experimental results found that the application of friction welding on A6063 led to significant grain refinement of the welded zone relative to that of the base material. Besides this, intermetallic compounds such as AlMnSi and Al2Cu were found to be dispersed with more refined size relative to that of the base material. This formation retains the mechanical properties of the welds, which results in the fracture aspect at the base material zone. Therefore, based on the developed microstructures and mechanical properties, the application of friction welding on A6063 could be used to obtain a sound weld zone.