논문 상세보기

손글씨 인식을 위한 딥러닝에서 훈련 옵션의 영향 분석 KCI 등재

Analysis of the Effect of Training Options on Deep Learning Network for Handwriting Recognition

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/326597
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
복합신소재구조학회 논문집 (Journal of the Korean Society for Advanced Composite Structures)
한국복합신소재구조학회 (Korean Society for Advanced Composite Structures)
초록

Deep learning techniques are being studied and developed throughout the medical, agricultural, aviation, and automotive industries. It can be applied to construction fields such as concrete cracks and welding defects. One of the best performing techniques of deep running is CNN technique. In this study, we analyzed the classification of handwritten images using CNN technique before applying them to construction field. Deep running is generally more accurate with deeper layers, but analysis cost is high. In addition, many variations can occur depending on training options. Therefore, this study performed a parametric study to be a reference when CNN technique was applied through accuracy analysis according to training options.

목차
1. 서 론
 2. CNN 개요
 3. 손글씨 인식을 위한 CNN
  3.1 Step 1 : Load the Image Data
  3.2 Step 2 : Specify Training and Test Sets
  3.3 Step 3 : Define the Network Layers
  3.4 Step 4 : Specify the Training Options
  3.5 Step 5 : Train the Network using TrainingData
  3.6 Step 6 : Classify the Images in the TestData and Compute Accuracy
 4. 해석 예 및 결과 분석
 5. 요약 및 결론
 ACKNOWLEDGMENT
 REFERENCES
저자
  • 손병직(건양대학교 해외건설플랜트학과 교수) | Son Byung-Jik