Cis-Prenyltransferase Interacts with a Nogo-B Receptor Homolog for Dolichol Biosynthesis in Panax ginseng Meyer
Background : Prenyltransferases catalyze the sequential addition of IPP units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). Although CPTs and TPTs share similar substrate preferences and reaction products, they can be easily distinguished by their primary amino acid sequences. The characterization of cis-prenyltransferases has been less studied than that of trans-prenyltransferases. Methods and Results : Gene expression patterns of PgCPT1 was analyzed by qRT-PCR. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for rer2Δ complementation and yeast-two-hybrid assay. Ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and can complement yeast mutant rer2Δ via possible protein-protein interaction with PgCPTL2. Conclusion : Partial complementation of the yeast dolichol biosynthesis mutant rer2Δ suggested that PgCPT1 is involved in some of dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.