The aim of this paper is to clarify the structural stability of Refracted Telescopic Boom in 30m Class with the Property of Working Range Insulation. The boom of insulation special vehicle consists of a 3-stage telescopic boom, 2-stage refracting boom, insulation boom and effector. The catia solid geometry of the boom was used to generate both a basic ADAMS model and the finite element meshes for the flexible components. The flexible bodies were generated by using the finite element program of ANSYS and then imported into the ADAMS model and their flexibility accounted to the dynamic analysis of boom. Embedding finite element representations within the ADAMS model, offers the advantage being able to perform the durability analysis and the resulting damage. Through this approach, the crack locations(hot spots) in a prototype can be predicted successfully, thereby validating the analysis procedure.