In this study, theoretical analyses are performed to investigate the characteristics of the static and dynamic stiffness of a nonlinear vibration isolator system. The vibration isolator system is modeled as an equivalent nonlinear oscillator. Based on the model, the static equilibrium and frequency response solutions are obtained with the variations of external static load and/or system parameters. It is shown that the static stiffness of the nonlinear vibration isolator tends to be hardened with the increase of external static load, which prevents the occurrence of excessively large deflection. This static stiffness-hardening effect is more remarkable with a larger spring constant ratio. The dynamic stiffness is also strengthened when the spring constant ratio increases, which enlarges the force transmissibility and reduces the isolation frequency bandwidth. Thus, the static stiffness- hardening improves the robustness of the nonlinear vibration isolator, whereas the dynamic stiffness-hardening rather degrades its performance. Thus, the opposite tendency of the static and dynamic stiffness-hardening effects should be considered in the design process of the nonlinear vibration isolator.
Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.
Plasma polymerized Styrene thin films were used as a memory layer in a memory device. As for the memory layer, a ppS thin films were used for the organic memory device and their charge storage characteristic was investigated comparatively, where the charge storage effect was evaluated by a hysteresis voltage. The organic memory device with ppS thin film of 30nm and 50nm as memory layer showed promising memory characteristics such as hysteresis voltage of 20V and 28V. The ppS revealed promising charge storage properties which confirms that an organic memory device without floating gate could be successfully implemented by using the ppS thin film as a memory layer.
To improve ferroelectric properties of PZT, many studies have attempted to fabricate dense PZT films. The AD process has an advantage for forming dense ceramic films at room temperature without any additional heat treatment in low vacuum. Thick films coated by AD have a higher dielectric breakdown strength due to their higher density than those coated using conventional methods. To improve the breakdown strength, glass (SiO2-Al2O3-Y2O3, SAY) is mixed with PZT powder at various volume ratios (PZT-xSAY, x = 0, 5, 10 vol%) and coating films are produced on silicon wafers by AD method. Depending on the ratio of PZT to glass, dielectric breakdown strength and energy storage efficiency characteristics change. Mechanical impact in the AD process makes the SAY glass more viscous and fills the film densely. Compared to pure PZT film, PZT-SAY film shows an 87.5% increase in breakdown strength and a 35.3 % increase in energy storage efficiency.
Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of highfrequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.
연구에서는 새로 설계한 고분자 절연체 위에 전자 주개(Donor)-받개(Acceptor) 기반의 반도체성 공중합체인 Cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ)를 활성 반도체층으로 형성하여 제작한 고분자 반도체 전계효과 트랜지스터의 전기적 특성을 살펴보았다. 이 연구에서 제시하는 고분자 절연체 박막은 내열성과 전기절연성이 우수한 포스파젠과 멜리민 구조가 가교된 형태를 가지기 때문에 0.006 nm의 매우 평탄한 RMS 표면 거칠기를 가졌으며, 4.5 MV/cm 이상의 매우 우수한 절연강도와 1.55의 다소 낮은 유전 상수를 가진 것으로 측정되었다. 그리고, 고분자 절연 막과 계면을 이루는 CDT-BTZ D-A 타입 반도체성 공중합체 박막은 2.0 x 10-3 cm2/Vs의 선형영역 이동도와 1.0 x 10-3 cm2/Vs의 포화영역 이동도를 갖는 것으로 측정되었다. 이를 통해, 고분자 절연체 위에 형성된 CDT-BTZ 고분자 반도체 박막은 유연 전자회로의 스위칭 소자로 쓰이기에 충분한 잠재성이 있다고 여겨진다.
Due to rapid industrialization and urbanization, maintenance of high voltage transmission lines in narrow alleys, complex roads, or old factory areas is required. Since the existing aerial lift vehicle is made of steel, there is a risk of electric shock. Therefore, there is a need for the development of an insulated aerial lift vehicle that can prevent electric shock accidents during electrical work. In particular, the development of an insulated aerial lift vehicle is required in a recent work environment where live line work is inevitable. The development of composite insulation boom for the vertical swing type aerial lift vehicle is studied. The insulated boom was developed by applying glass fiber-epoxy composite and filament winding process. The developed insulated boom was verified by measuring dielectric breakdown strength, surface resistance and volume resistance according to ASTM D149 and ASTM D257.
In this paper, the boom of a 30m class refracted insulation with outrigger on aerial elevating work platform is modeled as 3D CAD program of CATIA. The static and dynamic analyses are performed by using ANSYS and ADAMS programs, respectively. The refracted insulation boom uses acetal and the composite boom for insulation. And the composite insulation boom is modeled by using ACP (Ansys Composite Prepost) of ANSYS program. In order to analyze the durability of refracted insulation boom, the static analysis is performed and each analyzed part is stored as =MNF-type flexible body model. The dynamic analysis is performed with ADAMS by using the flexible model. As the result, these analyzes clarify the structural stability and dynamic durability (hot spot) of the refracted insulation boom.
Lead free (Ba0.7Ca0.3) TiO3 thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nanosized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at 700 ℃/2h have an energy density of 1.84 J/cm3 and a charge-discharge efficiency of 69.9%, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.
We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/ SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below 350℃. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and H2O increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., Al2O3) that can sufficiently prevent the diffusion of impurities into the channel.
Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at 1400℃, the second crystalline phase changes to compounds containing more Al2O3 when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from 1750℃ to 1400℃, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.
The aim of this paper is to clarify the structural stability of Refracted Telescopic Boom in 30m Class with the Property of Working Range Insulation. The boom of insulation special vehicle consists of a 3-stage telescopic boom, 2-stage refracting boom, insulation boom and effector. The catia solid geometry of the boom was used to generate both a basic ADAMS model and the finite element meshes for the flexible components. The flexible bodies were generated by using the finite element program of ANSYS and then imported into the ADAMS model and their flexibility accounted to the dynamic analysis of boom. Embedding finite element representations within the ADAMS model, offers the advantage being able to perform the durability analysis and the resulting damage. Through this approach, the crack locations(hot spots) in a prototype can be predicted successfully, thereby validating the analysis procedure.
The object of this study is to compare the shock isolation characteristics of the commercially available rubber washers due to the difference in a tightening torque and hardness. Drop impact test using a steel ball which can simulate the pyroshock acceleration was devised. The test results show that silicon had the highest shock isolation performances followed by urethane, nitrile showed the least performances. In addition, the test results show that the smaller a tightening torque and hardness, the shock isolation characteristics are improved. And this study propose an analysis method using the shock transmissibility function in order to minimize some uncertainty of the impact excitation in the shock response spectrum analysis.
Insulating TaNx films were grown by plasma enhanced atomic layer deposition using butylimido tris dimethylamido tantalum and N2+H2 mixed gas as metalorganic source and reactance gas, respectively. Crossbar devices having a Pt/TaNx/Pt stack were fabricated and their electrical properties were examined. The crossbar devices exhibited temperature-dependent nonlinear I (current) - V (voltage) characteristics in the temperature range of 90-300 K. Various electrical conduction mechanisms were adopted to understand the governing electrical conduction mechanism in the device. Among them, the Poole- Frenkel emission model, which uses a bulk-limited conduction mechanism, may successfully fit with the I - V characteristics of the devices with 5- and 18-nm-thick TaNx films. Values of ~0.4 eV of trap energy and ~20 of dielectric constant were extracted from the fitting. These results can be well explained by the amorphous micro-structure and point defects, such as oxygen substitution (ON) and interstitial nitrogen (Ni) in the TaNx films, which were revealed by transmission electron microscopy and UV-Visible spectroscopy. The nonlinear conduction characteristics of TaNx film can make this film useful as a selector device for a crossbar array of a resistive switching random access memory or a synaptic device.
When working on electrical wiring and cable, Electrically insulated aerial work platforms must be used to prevent the electrocution hazards. Aerial work platforms with composition boom is able to increase the weight and height of the workspace due to the lightweight of boom. The aim of this paper is to clarify structural stability of 3 stage telescopic booms having an operator platform and an upper boom of composition(Fiber Reinforced Plastic) by comparing the general telescopic booms with steel material using computational analysis.
To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at 200 oC came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over 200 oC promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.
To research the characteristics of ITO film depending on a polarity of SiOC, specimens of ITO/SiOC/glass with metal-insulator-substrates (MIS) were prepared using a sputtering system. SiOC film with 17 sccm of oxygen flow rate became a non-polarity with low surface energy. The PL spectra of the ITO films deposited with various argon flow rates on SiOC film as non-polarity were found to lead to similar formations. However, the PL spectra of ITO deposited with various argon flow rates on SiOC with polarity were seen to have various features owing to the chemical reaction between ITO and the polar sites of SiOC. Most ITO/SiOC films non-linearly showed the Schottky contacts and current increased. But the ITO/SiOC film with a low current demonstrated an Ohmic contact.
본 논문은 절연유 불포함 재활용 가능 전력케이블 절연체에 동일배열 폴리프로필렌(IPP) 기반 열가소성 폴리올레핀 엘라스토머(TPO) 나노복합체 사용 가능성을 문헌적으로 고찰한 리뷰논문이다. 2010년 IPP 기반 나노복합 유전체는 파워 커패시터 연구에서 유전손실을 제외한 고전압 특성이 크게 향상되었다. IPP 기반 TPO 나노복합체 사용 자동차 외장부품 연구에서는 나노충전제 최대 3 wt% 함유로 전력케이블 절연체의 필수특성인 저온 충격성을 비롯한 기계적 특성향상이 보고 되었다. 특히 유전손실의 원천인 상용화제 사용의 최소화 기술이 보고되어, 3 wt% 이하 나노충전제 함유 IPP 기반 TPO의 전기적 특성조사가 필요하다.
Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-VCB) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.