This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.